Skip to main content
Log in

Pharmaceutical and medical applications of polymer electrolytes

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Classic methods of drug delivery have embraced a number of routes into the site of pharmacological action. Modern preference, wherever possible, is for a non-invasive route to minimise the chance of cross infection, especially of the AIDS virus. The skin, which is the largest organ in the human body, is a particularly appealing route as, in the absence of wounds and blemishes, it offers a natural, high-integrity, barrier to the outside world. Skin patches containing active drug that is allowed to diffuse passively across the external skin barrier into the bloodstream now enjoy wide application but a problem is that the rate of egress is often slow.

For certain ionic drugs, including local anaesthetics and, more recently, peptides and gene-based, biotechnological engineered pharmaceuticals, it is possible substantially to enhance transdermal transport by iontophoresis. The technique of iontophoresis facilitates the passage of ionic drugs through the skin using an electric current. Ionically conducting polymers (polymer electrolytes) are potential candidates as hosts for drugs to be delivered iontophoretically.

Key issues affecting iontophoretic delivery are reviewed in this paper and the potential role of polymer electrolyte materials in iontophoretic devices will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Banga, Electrically Assisted Transdermal and Topical Drug Delivery, Taylor and Francis, London, 1998 (ISBN 0-7484-0687-5).

  2. P. Tyle and P. Agrawala, Pharm Res.6, 355 (1989).

    Article  CAS  Google Scholar 

  3. A.L. Watkins, A Manual of Electrotherapy, 3rd Ed., Lea & Gebiger, USA, 1968.

    Google Scholar 

  4. A. Helmstadter, Pharmazie56, 583 (2001).

    CAS  Google Scholar 

  5. S. Leduc, Electric Ions and Their Use in Medicine”, Rebman, London, 1908

    Google Scholar 

  6. L.E. Gibson, and R.E. Cooke, Pediatrics23, 545 (1959).

    CAS  Google Scholar 

  7. M.B. Delgado-Carro and R.H. Guy, STP Pharma Sciences11, 403 (2001).

    Google Scholar 

  8. M.R. Prausnitz, V.G. Bose, R. Langar, and J.C. Weaver, Proc. Natl. Acad. Sci., USA90, 10504 (1993).

    CAS  Google Scholar 

  9. L.P. Gangarosa, N. Park, C.A. Wiggins and J.M. Hill, J. Pharm. Exp. Ther.212, 377 (1980).

    CAS  Google Scholar 

  10. K. Yokoyama, K. Matsumoto, and J. Murase, J. Clin. Laser Med. & Surgery18, 9 (2000).

    CAS  Google Scholar 

  11. N. Sekkat, A. Naik, Y. N. Kalia, P. Glikfeld and R.H. Guy, J. Controlled Release81, 83 (2002).

    Article  CAS  Google Scholar 

  12. C. Curdy, Y.N. Kalia, F. Falson-Reig, and R.H. Guy, AAPS Pharm. Sci.2, art. no. 23. (2000).

  13. R. Plutchik and H.R. Hirsch, Science141, 927 (1963).

    CAS  Google Scholar 

  14. D.F. Untereker, J.B. Phipps and G.A. Lattin, US Patent 5573503 (1996).

  15. Y.W. Chien and A.K. Banga, US Patent 5250022 (1993).

  16. S. Dinh, S.E. Wouters and J.R. Selafani, Pharm. Res.13, 360 (1996).

    Google Scholar 

  17. J.B. Phipps, US Patent 5403275 (1995).

  18. W.T. Zempsky and M.A. Ashburn, Am. J. Anesthesiol.25, 158 (1998).

    CAS  Google Scholar 

  19. K.C. Sung, J.Y. Fang and O.Y. Hu, J. Controlled Release67, 1 (2000).

    Article  CAS  Google Scholar 

  20. R. van der Geest, T. van Laar, J.M. Gubbens-Stibbe, H.E. Bodde and M. Danhof, Pharm. Res.14, 1804 (1997).

    Google Scholar 

  21. P.J. Sadler, H.M. Thompson, P. Maslowski and A. Liddle, Br. J. Anaesth.82, 432 (1999).

    CAS  Google Scholar 

  22. T.R. Bacro, E.B. Holladay, M.J. Stith and C.M. Smith, Cancer Detect. Prev.24, 610 (2000).

    CAS  Google Scholar 

  23. V. Preat and N. Dujardin, STP Pharma Sci.11, 57 (2001).

    CAS  Google Scholar 

  24. K. Karami, N. Merclin, F. Brouneus and P. Beronius, Int. J. Pharmaceutics201, 121 (2000).

    Article  CAS  Google Scholar 

  25. R.G. Linford, Electrochemical Science and Technology of Polymers Volume 1 and Volume 2, Elsevier Applied Science, London, (1987) & (1990).

  26. R.G. Linford, R.J. Latham, P.M. Taylor and T.S. Sahota: in European Symposium on Transdermal Administration, Editions de Sante, Paris (1997).

    Google Scholar 

  27. J.E.F. Reynolds, 9ed, Martindale, The Extra Pharmacopoeia (30th edition), The Pharmaceutical Press, London, (1993).

    Google Scholar 

  28. T.S. Sahota, R. J. Latham, R.G. Linford and P.M. Taylor, in: New Biomedical Materials (P.I. Haris and D. Chapman, Eds.) IOS Press, Amsterdam, (1998).

    Google Scholar 

  29. T.S. Sahota, R.J. Latham, R.G. Linford and P.M. Taylor, Drug Dev. Ind. Pharm.25, 307 (1999).

    Article  CAS  Google Scholar 

  30. T.S. Sahota, R. J. Latham, R. G. Linford and P.M. Taylor, Drug Dev. Ind. Pharm.26, 1039 (2000).

    Article  CAS  Google Scholar 

  31. L. Brannon-Peppas, http://www.devicelink.com/mpb/archive/97/11/003.html (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latham, R.J., Linford, R.G. & Schlindwein, W.S. Pharmaceutical and medical applications of polymer electrolytes. Ionics 9, 41–46 (2003). https://doi.org/10.1007/BF02376535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02376535

Keywords

Navigation