Advertisement

Somatic Cell and Molecular Genetics

, Volume 22, Issue 6, pp 443–451 | Cite as

Nuclear inheritance of a gene affecting mitochondrial gene expression

  • Zaki A. Sherif
  • Linda M. Jefferson
  • Carolyn D. Whitfield-Broome
Article
  • 26 Downloads

Abstract

Due to a deficiency in mitochondrial protein synthesis, Chinese hamster lung (CHL) cell mutant Gal 32 does not grow in galactose or fructose. This report examines the nuclear or cytoplasmic inheritance of this single, recessive mutation. In a control experiment, fusion of Gal+TGsTK cells with Gal32TGRTK+ cells resulted in tetraploid hybrids (as verified by karyotyping) that were selected in hypoxanthine/aminopterin/thymidine medium. The majority (2/3) of the control hybrids grew in galactose as expected since Gal is dominant over Gal. Fusion of Rhodamine 6-G treated Gal+TGSTK cells with Gal32TGRTK+ cells resulted in Rhodamine 6-G-tetraploid hybrids that were selected in hypoxanthine/aminopterin/thymidine medium. The majority (7/12) of the Rhodamine 6-G-hybrids grew in galactose as expected for a nuclearly encoded gene considering that Rhodamine 6-G interferes with transmission of mtDNA but not nuclear DNA. Therefore, these results are compelling in their demonstration of the nuclear origin of the Gal 32 mutation.

Keywords

Gene Expression Protein Synthesis Fructose Galactose Control Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Chu, E.H.Y., Sun, N.C., and Chang, C.C. (1972).Proc. Natl. Acad. Sci. U.S.A. 69:3459–3463.PubMedGoogle Scholar
  2. 2.
    Sun, N.C., Chang, C.C., and Chu, E.H.Y. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:469–473.PubMedGoogle Scholar
  3. 3.
    Malczewski, R.M., and Whitfield, C.D. (1982).J. Biol. Chem. 257:8137–8142.PubMedGoogle Scholar
  4. 4.
    Reitzer, L.J., Wice, B.M., and Kennell, D. (1979).J. Biol. Chem. 254:2669–2676.PubMedGoogle Scholar
  5. 5.
    Chomyn, A., Mariottini, P., Cleeter, M.W.J., Ragan, C.I., Matsuno-Yagi, A., Hatefi, Y., Doolittle, R.F., and Attardi, G. (1985).Nature (London) 314:592–597CrossRefGoogle Scholar
  6. 6.
    Chomyn, A., Cleeter, M.W.J., Ragan, C.I., Riley, M., Doolittle, R.F., Attardi, G. (1986).Science 234:614–618.PubMedGoogle Scholar
  7. 7.
    Malczewski, R.M., and Whitfield, C.D. (1984).J. Biol. Chem. 259:11103–11113.PubMedGoogle Scholar
  8. 8.
    Ditta, G., Soderberg, K., and Scheffler, I. (1977).Nature 268:64–67.CrossRefPubMedGoogle Scholar
  9. 9.
    Michaelis, G., Mannhaupt, G., Pratje, E., Fischer, E., Naggert, J., and Schwerzer, E. (1982). In:Mitochondrial Genes, (ed.) Sloninski, P., Borst, P., and Attardi, G. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor. NY) pp. 311–321.Google Scholar
  10. 10.
    Soderberg, K., Mascarello, J.T., Breen, G.A.M., and Scheffler, I.E. (1979).Somat. Cell Genet. 5:225–240.CrossRefPubMedGoogle Scholar
  11. 11.
    Whitfield, C.D., and Jefferson, L.M. (1990).J. Biol. Chem. 265:18852–18859.PubMedGoogle Scholar
  12. 12.
    Chu, E.H.Y. (1974).Genetics 78:115–132.PubMedGoogle Scholar
  13. 13.
    Robin, E.D., and Wong, R. (1988).J. Cell. Phystol. 136:507–513.Google Scholar
  14. 14.
    Fenwick, R.G. (1985). InMolecular Cell Genetics, (ed.) Gottesman, M.M. (John Wiley and Sons, New York, N.Y.) pp. 333–373.Google Scholar
  15. 15.
    Clive, D., Flamm, W.G., Machesko, M.R., and Bernheim, N.J. (1972).Mutation Res. 16:77–87.PubMedGoogle Scholar
  16. 16.
    Wallace, D.C. (1982). InTechniques in Somatic Cell Genetics, (ed) Shay, J. W. (Plenum Press, New York) pp. 159–187.Google Scholar
  17. 17.
    Whitfield, C.D. (1985). InMolecular Cell Genetics, (ed.) Gottesman, M.M. (John Wiley and Sons, New York, N.Y.) pp. 545–588.Google Scholar
  18. 18.
    Veomett, G., Shay, J., Hough, P.V.C., and Prescott, D.M. (1976).Methods m Cell Biol. 13:1–6.Google Scholar
  19. 19.
    Davidson, R.L., and Gerald, P.S. (1977).Methods in Cell. Biol. 14:325–338.Google Scholar
  20. 20.
    Crowe, R., Ozer, H., and Rifkin, D. (1978).Experiments with Normal and Transformed Cells. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) pp. 96–99.Google Scholar
  21. 21.
    Ziegler, M.L., and Davidson, R.L. (1981).Somat. Cell. Genet. 7:73–88.CrossRefPubMedGoogle Scholar
  22. 22.
    Gear, A.R.L. (1974).J. Biol. Chem. 249:3628–3637.PubMedGoogle Scholar
  23. 23.
    Howell, N., and Nalty, M.S. (1988).Somat. Cell Mol. Genet. 14:185–193.CrossRefPubMedGoogle Scholar
  24. 24.
    Howell, N., and Lee, A. (1989).Somat. Cell Mol. Genet. 15:237–244.CrossRefPubMedGoogle Scholar
  25. 25.
    Howell, N. (1983).Somat. Cell Genet. 9:1–24.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Zaki A. Sherif
    • 1
  • Linda M. Jefferson
    • 1
  • Carolyn D. Whitfield-Broome
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Howard University Cancer CenterHoward University College of MedicineWashington, D.C.

Personalised recommendations