Skip to main content
Log in

Elimination of mitochondrial elements and improved viability in hybrid cells

  • Published:
Somatic Cell Genetics

Abstract

Experiments were carried out to determine whether the mitochondria-specific dye rhodamine-6G (R6G) can affect transmission of cytoplasmic determinants in mammalian cells. When one parental cell type was treated with R6G prior to fusion with an untreated partner, the subsequent hybridization frequencies in both intra- and interspecific crosses were not adversely affected, even though R6G was extremely toxic to the parental cells. In addition, cells lethally treated with R6G could be rescued by fusion with cytoplasm alone from untreated cells. When chloramphenicol (CAP) resistant cells were used as the R6G-treated parent, the expression of CAP resistance in hybrids and cybrids was greatly reduced. Thus R6G can be used to control the input of cytoplasmic determinants into fused cells. In the interspecific (Chinese hamster × mouse) crosses, it was also seen that the majority of hybrids which had not been R6G pretreated grew poorly or degenerated after a short time. In contrast, nearly all hybrids in crosses where the hamster parent was R6G pretreated grew vigorously. The concomitant elimination of inviability and loss of mitochondrial determinants in R6G-pretreated hybrids suggests that interactions involving mitochondrial gene products or components can influence growth characteristics in interspecific somatic cell hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Sager, R. (1972).Cytoplasmic Genes and Organelles (Academic Press, New York).

    Google Scholar 

  2. Gillham, N.W. (1978).Organelle Heredity (Raven Press, New York).

    Google Scholar 

  3. Sager, R., and Ramanis, Z. (1967).Proc. Natl. Acad. Sci. U.S.A. 58:931–937.

    PubMed  Google Scholar 

  4. Sager, R., and Ramanis, Z. (1973).Theor. Appl. Genet. 43:101–108.

    Google Scholar 

  5. Dujon, B., Kruszewska, A., Slonimski, P.P., Bolatin-Fukuhara, M., Coen, D., Deutsch, J., Netter, P., and Weill, L. (1975).Mol. Gen. Genet. 137:29–72.

    Google Scholar 

  6. Gilham, N.W., Boynton, J.E., and Lee, R.E. (1974).Genetics 78:439–457.

    PubMed  Google Scholar 

  7. Bunn, C.L., Wallace, D.C., and Eisenstadt, J.M. (1974).Proc. Natl. Acad. Sci. U.S.A. 71:1681–1685.

    PubMed  Google Scholar 

  8. Mitchell, C.H., and Attardi, G. (1978).Somat. Cell Genet. 4:737–744.

    PubMed  Google Scholar 

  9. Yen, R.C.K., and Harris, M. (1978).Cell Struct. Funct. 3:79–88.

    Google Scholar 

  10. Munro, E., Siegel, R.L., Craig, I.W., and Sly, W.S. (1978).Proc. R. Soc. London B 201:73–85.

    Google Scholar 

  11. Lichtor, T., and Getz, G.S. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:324–328.

    PubMed  Google Scholar 

  12. Lichtor, T., Tung, B., and Getz, G.S. (1979).Biochemistry 12:2582–2590.

    Google Scholar 

  13. Harris, M. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:5604–5608.

    PubMed  Google Scholar 

  14. Howell, N., and Sager, R. (1979).Somat. Cell Genet. 5:833–845.

    PubMed  Google Scholar 

  15. Doersen, C., and Stanbridge, E. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:4549–4553.

    PubMed  Google Scholar 

  16. Wiseman, A., and Attardi, G. (1978).Mol. Gen. Genet. 167:51–63.

    PubMed  Google Scholar 

  17. Graves, J.A.M. (1980).Exp. Cell Res. 125:483–486.

    PubMed  Google Scholar 

  18. Strugger, S. (1938).Protoplasma 30:85–100.

    Google Scholar 

  19. Gear, A.R.L. (1974).J. Biol. Chem. 249:3628–3637.

    PubMed  Google Scholar 

  20. Johnson, L.V., Walsh, M.L., and Chen, L.B. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:990–994.

    PubMed  Google Scholar 

  21. Harris, M. (1974).J. Natl. Cancer Inst. 52:1811–1816.

    PubMed  Google Scholar 

  22. Ziegler, M.L., and Davidson, R.L. (1979).J. Cell. Physiol. 98:627–636.

    PubMed  Google Scholar 

  23. Harris, M. (1972).J. Cell. Physiol. 80:119–128.

    PubMed  Google Scholar 

  24. Matsuya, H., and Green, H. (1969).Science 163:697–698.

    PubMed  Google Scholar 

  25. Ziegler, M.L. (1978).Somat. Cell Genet. 4:477–489.

    PubMed  Google Scholar 

  26. Pontecorvo, G. (1971).Nature 230:367–369.

    PubMed  Google Scholar 

  27. Bunn, C.L., Wallace, D.C., and Eisenstadt, J.M. (1977).Somat. Cell Genet. 3:71–92.

    PubMed  Google Scholar 

  28. Wallace, D.C., and Eisenstadt, J.M. (1979).Somat. Cell Genet. 5:373–396.

    Google Scholar 

  29. Subik, J., Takascova, G., and Kovac, L. (1978).Mol. Gen. Genet. 166:103–116.

    PubMed  Google Scholar 

  30. Gunge, N. (1975).Mol. Gen. Genet. 139:189–202.

    PubMed  Google Scholar 

  31. Graves, J.A.M. (1972).Exp. Cell Res. 73:81–94.

    PubMed  Google Scholar 

  32. Graves, J.A.M., and Koschel, K.W. (1980).J. Cell. Physiol. 102:209–216.

    PubMed  Google Scholar 

  33. Ditta, G., Soderberg, K., Landy, F., and Scheffler, I.E. (1976).Somat. Cell Genet. 2:331–344.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, M.L., Davidson, R.L. Elimination of mitochondrial elements and improved viability in hybrid cells. Somat Cell Mol Genet 7, 73–88 (1981). https://doi.org/10.1007/BF01544749

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01544749

Keywords

Navigation