Skip to main content
Log in

Development of a computer model to predict strains in the individual fibers of a ligament across the ligamentous occipito-atlanto-axial (C0-C1-C2) complex

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A fresh ligamentous occipito-atlanto-axial (C0-C1-C2) complex was appropriately prepared and serially sectioned into thin slices along the transverse planes. The bony outlines from these slices were digitized and assembled in the proper manner to obtain a three-dimensional model of the complex using the AutoCAD® system. Various ligaments were identified on the model and strains in individual fibers of a ligament were predicted based on the principles of rigid body mechanics. The ligament behaviors in axial rotation, flexion, and extension modes were analyzed. The capsular ligament fibers were predicted to undergo strains in all modes. Furthermore, these ligaments experienced the largest strain among the ligaments analyzed. Fibers within a ligament were found to respond differently; some were more active than the others and some did not experience any strain at all. A differential behavior in the right and left side alar ligament fibers was also found in axial rotation. The transverse ligament was predicted to wrap around the dens during axial rotation. The strain within a fiber was found to be a function of the initial length (ligament laxity) and its distance from the center of rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blankevoort, L.; Huiskes, R.; de Lange, A. Recuritment of knee joint ligaments. J. Biomech. Eng. 113:94; 1991.

    CAS  PubMed  Google Scholar 

  2. Bogduk, N.; Marsland, A. The cervical zygapophysial joints as a source of neck pain. Spine 13:610; 1988.

    CAS  PubMed  Google Scholar 

  3. Cavanaugh, J.M.; El-Bohy, A.A.; Getchell, T.V.; Hardy, W.N.; King, A.I. Mechanical deformation of the facet joint capsule as a possible cause of back pain. Trans. Orthop. Res. Soc. 12:429; 1987.

    Google Scholar 

  4. Cavanaugh, J.M.; El-Bohy, A.A.; Hardy, W.N.; Getchell, T.V.; Getchell, M.; King, A.I. Sensory innervation of soft tissues of the lumbar spine in the rat. J. Orthop. Res. 7:389; 1989.

    Article  Google Scholar 

  5. Chazal, J.; Tanguy, A.; Bourges, M.; Gaurel, G.; Escande, G.; Guillot, M.; Vanneville, G. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J. Biomech. 18:167; 1985.

    Article  CAS  PubMed  Google Scholar 

  6. Dumas, G.A.; Beaudoin, L.; Drouin, G.In situ mechanical behavior of posterior spinal ligaments in the lumbar region: Anin vitro study. J. Biomech. 20:301; 1987.

    Article  CAS  PubMed  Google Scholar 

  7. Dvorak, J.; Hayek, J.; Zehnder, R. CT-functional diagnostics of the rotatory instability of the upper cervical spine. Part 2. An evaluation on healthy adults and patients with suspected instability. Spine 12:726; 1987.

    CAS  PubMed  Google Scholar 

  8. Dvorak, J.; Panjabi, M.; Gerber, M.; Wichmann, W. CT-functional diagnostics of the rotatory instability of upper cervical spine. 1. An experimental study on cadavers. Spine 12:197; 1987.

    CAS  PubMed  Google Scholar 

  9. Dvorak, J.; Schneider, E.; Saldinger, P.; Rahn, B. Biomechanics of the craniocervical region: The alar and transverse ligaments. J. of Orthop. Res. 6:452; 1988.

    CAS  Google Scholar 

  10. Fielding, J.W.; Hawkins, R.J. Atlanto-axial rotatory fixation. J. Bone Joint Surg. 59A:37; 1977.

    Google Scholar 

  11. Fielding, J.W. Cineroentgenography of the normal cervical spine. J. Bone Joint Surg. 39A:1280; 1957.

    Google Scholar 

  12. Goel, V.K.; Njus, G. Stress-strain characteristics of spinal ligaments. 32nd ORS; February 17–20; New Orleans, LA; 1986.

  13. Goel, V.K.; Weinstein, J.N.; eds. Biomechanics of the spine. Boca Raton, FL: CRC Press; 1990.

    Google Scholar 

  14. Goel, V.K.; Clark, C.R.; Galles, K.; Liu, Y.K. Moment-rotation relationships of the ligamentous occipito-atlanto-axial complex. J. Biomech 21:673; 1988.

    Article  CAS  PubMed  Google Scholar 

  15. Goel, V.K.; Fromknecht, S.; Nishiyama, K.; Weinstein, J.; Liu, Y.K. The role of spinal elements in flexion. Spine 10:516; 1985.

    CAS  PubMed  Google Scholar 

  16. Goel, V.K.; Winterbottom, J.M.; Schulte, K.R.; Chang, H.; Gilbertson, L.G.; Pudgil, A. G.; Gwon, J.K. Ligament laxity across C0-C1-C2 complex: Torque-theta characteristics until failure. Spine 15:990; 1990.

    CAS  PubMed  Google Scholar 

  17. Goel, V.K.; Winterbottom, J.M.; Weinstein, J.N.; Kim, Y.E. Load sharing among spinal elements of a motion segment in extension and lateral bending. J. Biomech. Engr. 109:291; 1987.

    CAS  Google Scholar 

  18. Grant, J.C.B. A method of anatomy-descriptive and deductive. Baltimore, MD: Williams and Wilkins Co.; 1952.

    Google Scholar 

  19. Gray, H. Anatomy of the human body. 23rd ed. Lewis, W.H., ed. Philadelphia: Lea & Febiger; 1983.

    Google Scholar 

  20. Hedtmann, A.; Steffen, R.; Methfessel, J.; Kolkitz, D.; Kramer, J.; Thols, M. Measurement of human lumbar spine ligaments during loaded and unloaded motion. Spine 14:175; 1989.

    CAS  PubMed  Google Scholar 

  21. Jepson, K.M.; Miller, J.A.; Schultz, A.B.; Andersson, G.B. Mechanical properties of L5-S1 motion segments. Presented at the ASME-WAM Bioengineering Symposium; 1985 November 17–22; Miami Beach, FL; 1985.

  22. Lorenz, M.; Patwardhan, A.; Vanderby, R. Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments. Spine 8:122; 1983.

    CAS  PubMed  Google Scholar 

  23. Lysell, E. Motion in the cervical spine. Acta Orthop. Scan (Suppl.) 123; 1969.

  24. Miller, J.A.A.; Haderspeck, K.A.; Schultz, A.B. Posterior element loads in lumbar motion segments. Spine 8:331; 1983.

    CAS  PubMed  Google Scholar 

  25. Miller, J.A.A.; Schultz, A.B.; Andersson, G.B.J. Load displacement behavior of sacroiliac joints. J. Ortho. Res. 5:92; 1987.

    Article  CAS  Google Scholar 

  26. Mooney, V.; Robertson, J. The facet syndrome. Clin. Orthop. 115:149; 1976.

    PubMed  Google Scholar 

  27. Moroney, S.P.; Schultz, A.B.; Miller, J.A.A.; Andersson, G.B.J. Load-displacement properties of lower cervical spine motion segments. J. Biomech. 21:769; 1988.

    Article  CAS  PubMed  Google Scholar 

  28. Nachemson, A.L.; Evans, J.H. Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). J. Biomech. 1:211; 1968.

    Article  CAS  PubMed  Google Scholar 

  29. Nagel, D.A.; Koogle, T.A.; Piziali, R.L.; Perkash, I. Stability of the upper lumbar spine following progressive disruptions and applications of individual internal and external fixation devices. J. Bone Joint Surg. 63A:62; 1981.

    Google Scholar 

  30. Neumann, P.; Keller, T.; Ekstrom, L.; Perry, L.; Hansson, T. Vertebrae bone mineral content—a predictor of tensile strain properties of lumbar anterior longitudinal ligament. Proceedings of 37th ORS; March 4–7; Anaheim, CA; 1991.

  31. Newton, P.O.; MacKenna, D.A.; Lyon, R.M.; Akeson, W.H.; Woo, S.L-Y. Comparison of mechanical properties of the medial collateral and anterior cruciate ligaments of the rabbit knee. ASME pub. AMD-95:53; 1989.

    Google Scholar 

  32. Panjabi, M.; Dvorak, J.; Duranceau, J.; Yamamoto, I.; Gerber, M.; Rauschning, M.; Bueff, H.U. Three-dimensional movements of the upper cervical spine. Spine 13:726; 1988.

    CAS  PubMed  Google Scholar 

  33. Panjabi, M.M.; Goel, V.K.; Takata, K. Physiologic strains in the lumbar spinal ligaments Spine 7:193; 1982.

    Google Scholar 

  34. Panjabi, M.M.; Jarneus, L.; Greenstein, G. Lumbar spine ligaments: Anin vitro biomechanical study. 11th International Society for the Study of the Lumbar Spine, 1984 June 3–7; Montreal, Canada; 1984.

  35. Panjabi, M.M.; White, A.A.; Johnson, R.M. Cervical spine mechanics as a function of transection of components. J. Biomech. 8:327; 1975.

    Article  CAS  PubMed  Google Scholar 

  36. Paris, S.V. Anatomy as related to function and pain. Orthop. Clin. North Am. 14:457; 1983.

    Google Scholar 

  37. Penning, L. Normal movements of the cervical spine. Am. J. Roentgenol. 130:317; 1978.

    CAS  Google Scholar 

  38. Pintar, F.A.; Myklebust, J.B.; Yaganandan, N.; Maiman, D.J.; Sances, A. Biomechanics of human spinal ligaments. In: Sances, A.; Thomas, D.J.; Ewing, C.L.; Larson, S.J.; Unterharnscheidt, F. eds. Mechanisms of head and spine trauma. Goshen, NY: Aloray; 1986; 505 pp.

    Google Scholar 

  39. Posner, I.; White, A.A.; Edwards, T.; Hayes, W.C. A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine 7:374; 1982.

    CAS  PubMed  Google Scholar 

  40. Schultz, A.B.; Warwick, D.N.; Berkson, M.H.; Nachemson, A.L. Mechanical properties of human lumbar spine motion segments-Part I: Responses in flexion, extension, lateral bending and torsion. J. Biomech. Eng. 101:46; 1979.

    Google Scholar 

  41. Steele, H.H. Anatomical and mechanical considerations of the atlanto-axial articulations. J. Bone Joint Surg. 50A:1481; 1968.

    Google Scholar 

  42. Stillwell, D.L. The nerve supply of the vertebral column and its associated structures in the monkey. Anat. Rec. 125:139; 1956.

    Google Scholar 

  43. Stokes, I.; Greenapple, D.M. Measurement of surface deformation of soft tissue. J. Biomech. 18:1; 1985.

    Article  CAS  PubMed  Google Scholar 

  44. Tencer, A.F.; Ahmed, A.M.; Burke, D.L. Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J. Biomech. Eng. 104:193; 1982.

    CAS  PubMed  Google Scholar 

  45. Tencer, A.F.; Mayer, T.G. Soft tissue strain and facet interaction in the lumbar intervertebral joint. I Input data and computational technique. J. Biomech. Eng. 105:201; 1983.

    CAS  PubMed  Google Scholar 

  46. Tencer, A.F.; Mayer, T.G. Soft tissue strain and facet interaction in the lumbar intervertebral joint. II Calculated results and comparison with experimental data. J. Biomech. Eng. 105:210; 1983.

    CAS  PubMed  Google Scholar 

  47. Tkaczuk, H. Tensile properties of human lumbar longitudinal ligaments. Acta Orthop. Scan. (Suppl.) 115; 1968.

  48. Waters, R.; Morris, J.M. Anin vitro study of normal and scoliotic interspinous ligaments. J. Biomech. 6:343; 1973.

    CAS  PubMed  Google Scholar 

  49. Werne, S. Studies in spontaneous atlas dislocation. Acta Orthop. Scand. 23 (Suppl); 1957.

  50. White, A.A.; Panjabi, M.M. Clinical biomechanics of the spine. Philadelphia: J.B. Lippincott; 1978.

    Google Scholar 

  51. Woo, S.L-Y.; Gomez, M.A.; Seguchi, Y.; Endo, C.M.; Akeson, W.H. Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J. Orth. Res. 1:22; 1983.

    CAS  Google Scholar 

  52. Woo, S.L.; Gomez, M.A.; Akeson, W.H. Measurement of nonhomogenous directional mechanical properties of articular cartilage in tension. J. Biomech. 9:785; 1976.

    Article  CAS  PubMed  Google Scholar 

  53. Wyke, B. Neurology of the cervical spinal joints. Physiotherapy 65:72; 1979.

    CAS  PubMed  Google Scholar 

  54. Yang, K.H.; King, A.I. Mechanism of facet load transmission as a hypothesis for low back pain. Spine 9:557; 1984.

    CAS  PubMed  Google Scholar 

  55. Yoganandan, N.; Pintar, F.; Butler, J.; Reinartz, J.; Sances, A.; Larson, S. Dynamic response of human cervical spine ligaments. Spine 14:1102, 1989.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, V.K., Yamanishi, T.M. & Chang, H. Development of a computer model to predict strains in the individual fibers of a ligament across the ligamentous occipito-atlanto-axial (C0-C1-C2) complex. Ann Biomed Eng 20, 667–686 (1992). https://doi.org/10.1007/BF02368612

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368612

Keywords

Navigation