Skip to main content
Log in

The effect ofin vitro fluoride ion treatment on the ultrasonic properties of cortical bone

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mechanical properties of composites are influenced, in part, by the volume fraction, orientation, constituent mechanical properties, and interfacial bonding. Cortical bone tissue represents a short-fibered biological composite where the hydroxyapatite phase is embedded in an organic matrix composed of type I collagen and other noncollagenous proteins. Destructive mechanical testing has revealed that fluoride ion treatment significantly lowers theZ-axis tensile and compressive properties of cortical bone through a constituent interfacial debonding mechanism. The present ultrasonic data indicates that fluoride ion treatment significantly alters the longitudinal velocity in theZ-axis as well as the circumferential and radial axes of cortical bone. This suggests that the distribution of constituents and interfacial bonding amongst them may contribute to the anisotropic nature of bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashman, R.B.; Corin, J.D.; Turner, C.H. Elastic properties of cancellous bone: measurement by an ultrasonic technique. J. Biomech. 20:979–987; 1987.

    Article  CAS  PubMed  Google Scholar 

  2. Boskey, A.L. Mineral-matrix interactions in bone and cartilage. Clin. Orthop. Rel. Res. 281:244–274; 1992.

    Google Scholar 

  3. Bundy, K.J. Determination of mineral-organic bonding effectiveness in bone—theoretical considerations, Ann. Biomed. Eng. 13:119–135; 1985.

    CAS  PubMed  Google Scholar 

  4. Carter, D.R.; Beaupre, G.S. Effects of fluoride treatment on bone strength. J. Bone Miner. Res. Suppl. 1 5:S177-S184; 1990.

    CAS  PubMed  Google Scholar 

  5. Chander, S.; Fuerstenau, D.W. An XPS study of the fluoride uptake by hydroxyapatite. Coll. Sur. 13:137–145, 1985.

    CAS  Google Scholar 

  6. Franke, J.; Runge, H.; Grau, P.; Fengler, F.; Wanka, C.; Rempel, H. Physical properties of fluorosis bone. Acta Orthop. Scand. 47:20–27; 1976.

    CAS  PubMed  Google Scholar 

  7. Gilmore, R.S.; Katz, J.L. Elastic properties of apatites. J. Mat. Sci. 17:1131–1141.

  8. Grynpas, M.D.; Rey, C. The effect of fluoride treatment on bone mineral crystals in the rat. Bone 13:423–439; 1992.

    Article  CAS  PubMed  Google Scholar 

  9. Guzelsu, N.; Donofrio, J. Particle electrophoresis of compact bone tissue. J. Bioelectricity. 2:187–196; 1983.

    Google Scholar 

  10. Guzelsu, N.; Ohno, M.; Walsh, W.R. Effect of fluoride ions on the mechanical properties of bone. Bone; 1993. In press.

  11. Guzelsu, N.; Walsh, W.R. Streaming potential of intact wet bone. J. Biomechanics 23:673–686; 1990.

    CAS  Google Scholar 

  12. Hunter, R.J. Zeta potential in colloid science: principles and applications. London: Academic Press Inc.; 1981.

    Google Scholar 

  13. Katz, H.L.; Yoon, H.S. The structure and anisotropic mechanical properties of bone. IEEE Trans. Biomed. Eng. 31: 878–883; 1984.

    CAS  PubMed  Google Scholar 

  14. Kim, H.D.; Walsh, W.R. Mechanical and ultrasonic characterization of cortical bone. Biomimetics 1(4);293–310; 1993.

    Google Scholar 

  15. Lees, S.; Hanson, D.B. Effect of fluoride dosage on bone density, sonic velocity and longitudinal modulus of rabbit femurs. Calc. Tiss. Int. 50:88–92; 1992.

    CAS  Google Scholar 

  16. Lees, S.; Heeley, J.D.; Cleary, P.F. A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif. Tiss. Int. 29:107–117; 1979.

    CAS  Google Scholar 

  17. LeGeros, R.A.; Singer, L.; Ophaug, R.H.; Quirolgico, G.; Thein, A.; LeGeros, J.P. The effect of fluoride on the stability of synthetic and biological (bone mineral) apatites. In: Menczel, J.; Makin, M.; Steinberg, R., eds. Osteoporosis. New York: J. Wiley & Sons; 1982: pp. 327–341.

    Google Scholar 

  18. Li, S.T.; Katz, E. On the state of anionic groups of demineralized bone and dentin. Calcif. Tiss. Res. 22:275–282; 1977.

    Article  CAS  Google Scholar 

  19. Lundy, M.W.; Wergedal, J.E.; Teubner, E.; Burnell, J.; Sherrard, D.; Baylink, D.J. The effect of prolonged fluoride therapy for osteoporosis: bone composition and histology. Bone. 10:321–327; 1989.

    Article  CAS  PubMed  Google Scholar 

  20. Martin, R.B.; Ishida, J. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J. Biomech. 5:419–426; 1989.

    Google Scholar 

  21. Matsushima, N.; Akiyama, M.; Terayama, Y. Quantitative analysis of the orientation of mineral in bone from small angle x-ray scattering patterns. Jap. J. Appl. Phys. 21:186–189; 1982.

    Article  Google Scholar 

  22. McElhaney, J.H. Dynamic response of bone and muscle tissue. J. Appl. Physiol. 4:1231–1236; 1966.

    Google Scholar 

  23. Misra, D. Surface chemistry of bone and tooth mineral. In: Dickson, G.R., ed. Methods of calcified tissue preparation. New York: Elsevier; 1984: pp. 435–465.

    Google Scholar 

  24. Moreno, E.C.; Kresak, M.; Hay, D.I. Adsorption of molecules of biological interest onto hydroxyapatite. Calcif. Tissue Int. 33:395–402; 1984.

    Google Scholar 

  25. Pearce, E.I.F. Ion displacement following the adsorption of anionic macromolecules on hydroxyapatite. Calcif. Tissue Int. 33:395–402; 1981.

    CAS  PubMed  Google Scholar 

  26. Posner, A.S.; Betts, F.; Blumenthal, N.C. Bone mineral composition and structure. In: Simmons, D.J.; Kunin, A.S., eds. Skeletal research: an experimental approach. New York: Academic Press; 1979.

    Google Scholar 

  27. Ramsy, A.C.; Duff, E.J.; Patterson, L.; Stuart, J.L. The uptake of F by hydroxyapatite at varying pH. Caries Res. 7:231–244; 1973.

    Google Scholar 

  28. Sasaki, N.; Matsushima, N.; Ikawa, T.; Yamamura, H.; Fukida, A. Orientation of bone mineral and its role in the anisotropic mechanical properties of bone—transverse ansiotropy. J. Biomech. 2:157–164; 1989.

    Google Scholar 

  29. Termine, J.D.; Eanes, E.D.; Greenfield, D.J.; Nylen, M.U. Hydrazine-deproteinated bone mineral: physical and chemical properties. Calc. Tiss. Res. 12:73–90; 1973.

    Article  CAS  Google Scholar 

  30. Traub, W.; Arad, T.; Weiner, S. Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc. Natl. Acad. Sci. USA 86:9822–9826; 1989.

    CAS  PubMed  Google Scholar 

  31. Walsh, W.R.; Guzelsu, N. Compressive properties of cortical bone: mineral-organic interfacial bonding. Biomaterials 15:137–145, 1993.

    Google Scholar 

  32. Walsh, W.R.; Guzelsu, N. Electrokinetic behavior of intact wet bone: compartmental model. J. Ortho. Res. 9:683–692, 1991.

    Article  CAS  Google Scholar 

  33. Walsh, W.R.; Guzelsu, N. Mineral organic interfacial bonding and the mechanical properties of cortical bone tissue. Biomimetics 1:199–217, 1993.

    Google Scholar 

  34. Walsh, W.R.; Guzelsu, N. The role of ions and mineral-organic interfacial bonding on the compressive properties of cortical bone. Bio-Med. Mater. Eng. 3:75–84; 1993.

    CAS  Google Scholar 

  35. Walsh, W.R.; Ohno, M.; Guzelsu, N. Bone composite behavior: effects of mineral organic bonding. J. Mat. Sci. Mat. Med. 5:72–79, 1994.

    Article  CAS  Google Scholar 

  36. Yoon, H.S.; Katz, J.L. Ultrasonic wave propagation in human cortical bone—II. measurement of elastic properties and microhardness. J. Biomech. 9:407–412; 1976.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, W.R., Labrador, D.P., Kim, H.D. et al. The effect ofin vitro fluoride ion treatment on the ultrasonic properties of cortical bone. Ann Biomed Eng 22, 404–415 (1994). https://doi.org/10.1007/BF02368247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368247

Keywords

Navigation