Skip to main content
Log in

Fabrication and Mechanical Properties of Bone-like Tricalcium Phosphate and Zirconia Composites

  • High-Performance Ceramics
  • Published:
Interceram - International Ceramic Review

Abstract

The goal of this work was to prepare and analyse bioceramic composites having varied tricalcium phosphate and zirconia content and a fixed a mount of other additives. The physical properties and structure of the composites were assessed with x-ray diffraction. Various mechanical tests, including compressive strength, bending strength and Vickers hardness evaluations were performed on the prepared composites. Phase analysis of the composite structures showed the presence of zirconia, calcium zirconate, calcium phosphate, alumina and traces of aluminium phosphate. The mechanical properties of the composites improved with greater increments of zirconia, especially the composites containing 30% and 40% zirconia. Their mechanical properties are comparable to those of human bone. We concluded that the composites are promising as biomaterials in medical applications, especially for low load-bearing sites, such as substitutes for cancellous bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu, Y.W., Khor, K.A., Pan, D., Cheang, P.: Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid. Biomaterials 16 (2004) 3177–85

    Article  CAS  Google Scholar 

  2. Kim, H.W., Georgiou, G., Knowles, J.C., Koh, Y.H., Kim, H.E.: Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility. Biomaterials 18 (2004) 4203–13

    Article  CAS  Google Scholar 

  3. Kim, B.K., Bae, H.E., Shim, J.S., Lee, K.W.: The influence of ceramic surface treatments on the tensile load strength of composite resin to all-ceramic coping materials. J. Prosthet. Dent. 4 (2005) 357–62

    Article  CAS  Google Scholar 

  4. Akagawa, Y., Ichikawa, Y., Nikai, H., Tsuru, H.: Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J. Prosthet. Dent. 69 (1993) 599–604

    Article  CAS  Google Scholar 

  5. Rosengren, A., Pavlovic, E., Oscarsson, S., Krajewski, A., Ravaglioli, A., Pincastelli, A.: Plasma protein adsorption pattern on characterized ceramic biomaterials. Biomaterials 23 (2002) 1237–47

    Article  CAS  Google Scholar 

  6. Prabakaran, K., Kannan, S., Rajeswari, S.: Development and characterization of zirconia and hydroxyapatite composites for orthopaedic applications. Trends Biomater. Artif. Organs 18 (2005) [2] 114–116

    Google Scholar 

  7. Evis, Z.: Reactions in hydroxylapatite-zirconia composites. Ceram. Int. 33 (2007) 987–991

    Article  CAS  Google Scholar 

  8. Sibil, A., Douillard, T., Cayron, C., Godin, N., R’mili, M., Fantozzi, G.: Microcracking of high zirconia refractories after t/m phase transition during cooling: An EBSD study. J. Eur. Ceram. Soc. 31 (2011) 1525–1531

    Article  CAS  Google Scholar 

  9. Hannink, R., Kelly, P., Muddle, B.: Transformation toughening in zirconia containing ceramics, J. Am. Ceram. Soc. 83 (2000) [3] 461–487

    Article  CAS  Google Scholar 

  10. Engin, N.O., Tas, A.C.: Preparation of porous Ca10(PO4)6(OH)2 and Ca3(PO4)2 bioceramics. J. Am. Ceram. Soc. 83 (2000) 1581–1584

    Article  CAS  Google Scholar 

  11. Acchar, W., Costa, A.C.S., Cairo, C.A.A.: Influence of MgO doping in hot-pressing tricalcium phosphate. IOP Conf. Ser. Mater. Sci. Eng. 18 (2011) [19] 2014

    Article  Google Scholar 

  12. Sakka, S., Ben Ayed, F., Bouaziz, J.: Mechanical properties of tricalcium phosphate-alumina composites. IOP Conf. Ser. Mater. Sci. Eng. 28 (2012) 012028, DOI: 10.1088/1757-899X/28/1/012028

    Article  CAS  Google Scholar 

  13. Sellami, I., Ben Ayed, F., Bouaziz, J.: Effect of fluoroapatite additive on the mechanical properties of tricalcium phosphate-zirconia composites. IOP Conf. Ser. Mater. Sci. Eng. 28 (2012) 012029, DOI: 10.1088/1757-899X/28/1/012029

    Article  CAS  Google Scholar 

  14. Gaasbeek, R.D., Toonen, H.G., Van Heerwaarden, R.J., Buma, P.: Mechanism of bone incorporation of β-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials 26 (2005) 6713–6719

    Article  CAS  Google Scholar 

  15. Jensen, S.S., Broggini, N., Hjorting-Hansen, E., Schenk, R., Buser, D.: Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate, a histologic and histomorphometric study in the mandibles of minipigs. Clin. Oral Implants Res. 17 (2006) 237–243

    Article  Google Scholar 

  16. Destainville, A., Champion, E., Bernache, D.: Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Mater. Chem. Phys. 80 (2003) 269

    Article  CAS  Google Scholar 

  17. Sallemi, I., Bouaziz, J., Ben Ayed, F.: Elaboration and characterization of bioceramic based on tricalcium phosphate and zirconia. Int. J. Curr. Eng. Technol. 3 (2013) [5] 1691–1700

    Google Scholar 

  18. García-Sanz, F.J., Mayor, M.B., Arias, J.L., Pou, J., León, B., Pérez-Amor, M.: Hydroxyapatite coatings: A comparative study between plasma-spray and pulsed laser deposition techniques. J. Mater. Sci. Mater. Med. 8 (1997) 861–865

    Article  Google Scholar 

  19. Bouslama, N., Ben Ayed, F., Bouaziz, J.: Effect of fluorapatite additive on densification and mechanical properties of tricalcium phosphate. J. Mech. Behav. Biomed. 3 (2010) 2–13

    Article  Google Scholar 

  20. Runyan, J.L., Bennison, S.J.: Fabrication of flaw-tolerant aluminum titanate-reinforced alumina. J. Eur. Ceram. Soc. 7 (1991) 93–99

    Article  CAS  Google Scholar 

  21. Sakka, S., Bouaziz, J., Ben Ayed, F.: Advances in biomaterials science and biomedical applications. Book, chapter 2: Mechanical properties of biomaterials based on calcium phosphates and bioinert oxides for applications in biomedicine. InTech, Croatia (2013), 23–50, http://dx.doi.org/10.5772/53088

    Google Scholar 

  22. Sellami, I., Bouaziz, J., Ben Ayed, F.: The effect of adding magnesium oxide on the mechanical properties of the tricalcium phosphate-zirconia composites. Materials Chemistry and Physics 151 (2015) 50–59

    Article  CAS  Google Scholar 

  23. Chrysafi, R., Perraki, T., Kakali, G.: Sol-gel preparation of 2CaO·SiO2. J. Eur. Ceram. Soc. 27 (2007) 1707–1710

    Article  CAS  Google Scholar 

  24. Hanan H. Beheri, Khaled R. Mohamed, Gehan T. El-Bassyouni: Mechanical and microstructure of reinforced hydroxyapatite/calcium silicate nano-composites materials. Materials and Design 44 (2013) 461–468

    Article  CAS  Google Scholar 

  25. Ooi, C.Y., Hamdi, M., Ramesh, S.: Properties of hydroxyapatite produced by annealing of bovine bone. Ceram. Inter. 33 (2007) 1171–1177

    Article  CAS  Google Scholar 

  26. Silva, V.V., Lameiras, F.S.: Synthesis and characterization of composite powders of partially stabilized zirconia and hydroxyapatite. Materials Characterization 45 (2000) 51–59

    Article  CAS  Google Scholar 

  27. Rosengren, A., Pavlovic, E., Oscarsson, S., Krajewski, A., Ravaglioli, A., Pincastelli, A.: Plasma protein adsorption pattern on characterized ceramic biomaterials. Biomaterials 23 (2002) 1237–47

    Article  CAS  Google Scholar 

  28. Josset, Y., Oum’Hamed, Z., Zarriumpour, A., Lorenzato, M., Adnet, J., Laurent-Marquin, D.: In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics. J. Biomed. Mater. Res. 47 (1999) 481–93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled R. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beherei, H.H., Mohamed, K.R. Fabrication and Mechanical Properties of Bone-like Tricalcium Phosphate and Zirconia Composites. Interceram. - Int. Ceram. Rev. 65, 25–31 (2016). https://doi.org/10.1007/BF03401150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401150

Keywords

Navigation