Skip to main content
Log in

Applications of fast orthogonal search: Time-series analysis and resolution of signals in noise

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this paper a technique is examined for obtaining accurate and parsimonious sinusoidal series representations of biological time-series data, and for resolving sinusoidal signals in noise. The technique operates via a fast orthogonal search method discussed in the paper, and achieves economy of representation by finding the most significant sinusoidal frequencies first, in a least squares fit sense. Another reason for the parsimony in representation is that the identified sinusoidal series model is not restricted to frequencies which are commensurate or integral multiples of the fundamental frequency corresponding to the record length. Biological applications relate to spectral analysis of noisy time-series data such as EEG, ECG, EMG, EOG, and to speech analysis. Simulations are provided to demonstrate precise detection of component frequencies and weights in short data records, coping with missing or unequally spaced data, and recovery of signals heavily contaminated with noise. The technique is also shown to be capable of higher frequency resolution than is achievable by conventional Fourier series analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Malek, A.A.; Markham, C.H.; Marmarelis, P.Z.; Marmarelis, V.Z. Quantifying deficiencies associated with Parkinson's disease by use of time series analysis. J. EEG Clinical Neurophys. 69: 24–33; 1988.

    CAS  Google Scholar 

  2. Abdel-Malek, A.A.; O'Leary, D.P.; Marmarelis, V.Z. Parametric analysis of vestibulo-ocular responses to active head movements. IFAC Symp. Modelling Control Biomed. Sys., Venice Italy; 1988.

  3. Akaike, H. A new look at the statistical model identification. IEEE Trans. AC-19:716–723; 1974.

    Google Scholar 

  4. Box, G.E.P.; Jenkins, G.M. Time series analysis: forecasting and control. Oakland, CA. Holden-Day; 1976.

    Google Scholar 

  5. Chatfield, C. The analysis of time series: an introduction, third ed. London: Chapman and Hall; 1984.

    Google Scholar 

  6. Fallside, F.; Woods, W.A. (eds.) Computer speech processing. Englewood Cliffs, NJ; Prentice-Hall; 1985.

    Google Scholar 

  7. Fuller, W.A. Introduction to statistical time series. New York: John Wiley and Sons; 1976.

    Google Scholar 

  8. Gardner, W.A. Statistical spectral analysis: a nonprobabilistic theory. Englewood Cliffs, NJ; Prentice-Hall; 1988.

    Google Scholar 

  9. Goodwin, G.C.; Sin, K.S. Adaptive filtering prediction and control. Englewood Cliffs, NJ; Prentice-Hall; 1984.

    Google Scholar 

  10. Haber, R.; Keviczky, L. Identification of nonlinear dynamic systems. IFAC Symp. Ident. Sys. Param. Est. 1:79–126; 1976.

    Google Scholar 

  11. Ho, T.; Kwok, J.; Law, J.; Leung, L. Nonlinear system identification, ELEC-490 Project Rept. (supervisor: M. Korenberg), Dept. Elect. Eng., Queen's Univ., Kingston, Ontario, Canada, April; 1987.

    Google Scholar 

  12. Hsia, T.C. System identification. Lexington, MA; Lexington Books; 1977.

    Google Scholar 

  13. Kay, S.M. Modern spectral estimation: theory and application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

    Google Scholar 

  14. Korenberg, M.J. Orthogonal identification of nonlinear difference equation models. Proc. 28th Midwest Symp. Cir. Sys. 1:90–95; August 1985.

    Google Scholar 

  15. Korenberg, M.J. Fast orthogonal identification of nonlinear difference equation and functional expansion models. Proc. 30th Midwest Symp. Cir. Sys. 1:270–276; August 1987.

    Google Scholar 

  16. Korenberg, M.J. A robust orthogonal algorithm for system identification and time-series analysis. Biol. Cybern. 60:267–276; 1989.

    Article  CAS  PubMed  Google Scholar 

  17. Korenberg, M.J.; Bruder, S.B.; McIlroy, P.J.H. Exact orthogonal kernel estimation from finite data records; extending Wiener's identification of nonlinear systems. Ann. Biomed. Eng. 16:201–214; 1988.

    Article  CAS  PubMed  Google Scholar 

  18. Ljung, L. System identification; theory for the user. Englewood Cliffs, NJ: Prentice-Hall; 1987.

    Google Scholar 

  19. Ljung, L.; Soderstrom, T. Theory and practice of recursive identification. Cambridge, MA: MIT Press; 1983.

    Google Scholar 

  20. Marple, S.L., Jr. Digital spectral analysis with applications. Englewood Cliffs, NJ: Prentice-Hall; 1987.

    Google Scholar 

  21. McIlroy, P.J.H. Applications of nonlinear systems identification. M.S. Thesis, Queen's University, Kingston, Ontario, Canada; 1986.

    Google Scholar 

  22. Oppenheim, A.V.; Schafer, R.W. Digital signal processing. Englewood Cliffs, NJ: Prentice-Hall; 1975.

    Google Scholar 

  23. Orfanidis, S.F. Optimum signal processing. New York: Macmillan; 1985.

    Google Scholar 

  24. O'Shaughnessy, D. Speech communication: human and machine. Reading, MA: Addison-Wesley; 1987.

    Google Scholar 

  25. Otnes, R.K.; Enochson, L. Applied times series analysis, vol. I, Basic techniques. New York: John Wiley and Sons; 1978.

    Google Scholar 

  26. Paarmann, L.D.; Yaman-Vural, F.; Onaral, B. Parametric estimation of the spontaneous EEG under acceleration stress. Proc. Ninth An. Conf. IEEE Eng. Med. Bio. Soc. 3:1136–1137; Nov. 1987.

    Google Scholar 

  27. Rabiner, L.R.; Schafer, R.W. Digital processing of speech signals. Englewood Cliffs, NJ: Prentice Hall; 1978.

    Google Scholar 

  28. Robinson, E.R. Multichannel time series analysis with digital computer programs. second ed. Houston, TX: Goose Pond Press; 1983.

    Google Scholar 

  29. Shapley, R.M.; Victor, J.D. How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. J. Physiol. 318:161–179; 1981.

    CAS  PubMed  Google Scholar 

  30. Victor, J.; Shapley, R. The nonlinear pathway of Y ganglion cells in the cat retina. J. Gen. Physiol. 74:671–687; 1979.

    CAS  PubMed  Google Scholar 

  31. Weiner, D.D.; Spina, J.F. Sinusoidal analysis and modeling of weakly nonlinear circuits. New York: Van Nostrand Reinhold; 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korenberg, M.J., Paarmann, L.D. Applications of fast orthogonal search: Time-series analysis and resolution of signals in noise. Ann Biomed Eng 17, 219–231 (1989). https://doi.org/10.1007/BF02368043

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368043

Keywords

Navigation