Advertisement

Annals of Biomedical Engineering

, Volume 17, Issue 3, pp 219–231 | Cite as

Applications of fast orthogonal search: Time-series analysis and resolution of signals in noise

  • Michael J. Korenberg
  • Larry D. Paarmann
Article

Abstract

In this paper a technique is examined for obtaining accurate and parsimonious sinusoidal series representations of biological time-series data, and for resolving sinusoidal signals in noise. The technique operates via a fast orthogonal search method discussed in the paper, and achieves economy of representation by finding the most significant sinusoidal frequencies first, in a least squares fit sense. Another reason for the parsimony in representation is that the identified sinusoidal series model is not restricted to frequencies which are commensurate or integral multiples of the fundamental frequency corresponding to the record length. Biological applications relate to spectral analysis of noisy time-series data such as EEG, ECG, EMG, EOG, and to speech analysis. Simulations are provided to demonstrate precise detection of component frequencies and weights in short data records, coping with missing or unequally spaced data, and recovery of signals heavily contaminated with noise. The technique is also shown to be capable of higher frequency resolution than is achievable by conventional Fourier series analysis.

Keywords

Time-series analysis Orthogonal search Frequency analysis Sinusoidal series Modeling biological data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-Malek, A.A.; Markham, C.H.; Marmarelis, P.Z.; Marmarelis, V.Z. Quantifying deficiencies associated with Parkinson's disease by use of time series analysis. J. EEG Clinical Neurophys. 69: 24–33; 1988.Google Scholar
  2. 2.
    Abdel-Malek, A.A.; O'Leary, D.P.; Marmarelis, V.Z. Parametric analysis of vestibulo-ocular responses to active head movements. IFAC Symp. Modelling Control Biomed. Sys., Venice Italy; 1988.Google Scholar
  3. 3.
    Akaike, H. A new look at the statistical model identification. IEEE Trans. AC-19:716–723; 1974.Google Scholar
  4. 4.
    Box, G.E.P.; Jenkins, G.M. Time series analysis: forecasting and control. Oakland, CA. Holden-Day; 1976.Google Scholar
  5. 5.
    Chatfield, C. The analysis of time series: an introduction, third ed. London: Chapman and Hall; 1984.Google Scholar
  6. 6.
    Fallside, F.; Woods, W.A. (eds.) Computer speech processing. Englewood Cliffs, NJ; Prentice-Hall; 1985.Google Scholar
  7. 7.
    Fuller, W.A. Introduction to statistical time series. New York: John Wiley and Sons; 1976.Google Scholar
  8. 8.
    Gardner, W.A. Statistical spectral analysis: a nonprobabilistic theory. Englewood Cliffs, NJ; Prentice-Hall; 1988.Google Scholar
  9. 9.
    Goodwin, G.C.; Sin, K.S. Adaptive filtering prediction and control. Englewood Cliffs, NJ; Prentice-Hall; 1984.Google Scholar
  10. 10.
    Haber, R.; Keviczky, L. Identification of nonlinear dynamic systems. IFAC Symp. Ident. Sys. Param. Est. 1:79–126; 1976.Google Scholar
  11. 11.
    Ho, T.; Kwok, J.; Law, J.; Leung, L. Nonlinear system identification, ELEC-490 Project Rept. (supervisor: M. Korenberg), Dept. Elect. Eng., Queen's Univ., Kingston, Ontario, Canada, April; 1987.Google Scholar
  12. 12.
    Hsia, T.C. System identification. Lexington, MA; Lexington Books; 1977.Google Scholar
  13. 13.
    Kay, S.M. Modern spectral estimation: theory and application. Englewood Cliffs, NJ: Prentice-Hall, 1988.Google Scholar
  14. 14.
    Korenberg, M.J. Orthogonal identification of nonlinear difference equation models. Proc. 28th Midwest Symp. Cir. Sys. 1:90–95; August 1985.Google Scholar
  15. 15.
    Korenberg, M.J. Fast orthogonal identification of nonlinear difference equation and functional expansion models. Proc. 30th Midwest Symp. Cir. Sys. 1:270–276; August 1987.Google Scholar
  16. 16.
    Korenberg, M.J. A robust orthogonal algorithm for system identification and time-series analysis. Biol. Cybern. 60:267–276; 1989.CrossRefPubMedGoogle Scholar
  17. 17.
    Korenberg, M.J.; Bruder, S.B.; McIlroy, P.J.H. Exact orthogonal kernel estimation from finite data records; extending Wiener's identification of nonlinear systems. Ann. Biomed. Eng. 16:201–214; 1988.CrossRefPubMedGoogle Scholar
  18. 18.
    Ljung, L. System identification; theory for the user. Englewood Cliffs, NJ: Prentice-Hall; 1987.Google Scholar
  19. 19.
    Ljung, L.; Soderstrom, T. Theory and practice of recursive identification. Cambridge, MA: MIT Press; 1983.Google Scholar
  20. 20.
    Marple, S.L., Jr. Digital spectral analysis with applications. Englewood Cliffs, NJ: Prentice-Hall; 1987.Google Scholar
  21. 21.
    McIlroy, P.J.H. Applications of nonlinear systems identification. M.S. Thesis, Queen's University, Kingston, Ontario, Canada; 1986.Google Scholar
  22. 22.
    Oppenheim, A.V.; Schafer, R.W. Digital signal processing. Englewood Cliffs, NJ: Prentice-Hall; 1975.Google Scholar
  23. 23.
    Orfanidis, S.F. Optimum signal processing. New York: Macmillan; 1985.Google Scholar
  24. 24.
    O'Shaughnessy, D. Speech communication: human and machine. Reading, MA: Addison-Wesley; 1987.Google Scholar
  25. 25.
    Otnes, R.K.; Enochson, L. Applied times series analysis, vol. I, Basic techniques. New York: John Wiley and Sons; 1978.Google Scholar
  26. 26.
    Paarmann, L.D.; Yaman-Vural, F.; Onaral, B. Parametric estimation of the spontaneous EEG under acceleration stress. Proc. Ninth An. Conf. IEEE Eng. Med. Bio. Soc. 3:1136–1137; Nov. 1987.Google Scholar
  27. 27.
    Rabiner, L.R.; Schafer, R.W. Digital processing of speech signals. Englewood Cliffs, NJ: Prentice Hall; 1978.Google Scholar
  28. 28.
    Robinson, E.R. Multichannel time series analysis with digital computer programs. second ed. Houston, TX: Goose Pond Press; 1983.Google Scholar
  29. 29.
    Shapley, R.M.; Victor, J.D. How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. J. Physiol. 318:161–179; 1981.PubMedGoogle Scholar
  30. 30.
    Victor, J.; Shapley, R. The nonlinear pathway of Y ganglion cells in the cat retina. J. Gen. Physiol. 74:671–687; 1979.PubMedGoogle Scholar
  31. 31.
    Weiner, D.D.; Spina, J.F. Sinusoidal analysis and modeling of weakly nonlinear circuits. New York: Van Nostrand Reinhold; 1980.Google Scholar

Copyright information

© Pergamon Press plc 1989

Authors and Affiliations

  • Michael J. Korenberg
    • 1
  • Larry D. Paarmann
    • 2
  1. 1.Department of Electrical EngineeringQueen's UniversityKingstonCanada
  2. 2.Department of Electrical and Computer EngineeringDrexel UniversityPhiladelphia

Personalised recommendations