Skip to main content
Log in

Cellular engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cellular engineering applies the principles and methods of engineering to the problems of cell and molecular biology of both a basic and applied nature. As biomedical engineering has shifted from the organ and tissue level to the cellular and sub-cellular level, cellular engineering has emerged as a new area. A cornerstone of much of this activity is cell culture technology, i.e., the ability to grow living cells in the artificial environment of a laboratory. Cellular engineering includes the role of engineering in both basic cell biology research and in the making of products which use living cells, e.g., tissue engineering and bioprocess engineering. The former involves the use of living cells in the development of biological substitutes for the restoration or replacement of function, and the latter the use of living cells to manufacture a biochemical product, e.g., throught the use of recombinant DNA technology. In fact, as biomedical engineering has expanded to include the cellular level, and bioprocess engineering has shifted in interest from microbial organisms to include mammalian cells, there are intellectual issues in which an interest is shared by these two formerly separate areas of engineering activity. Cellular engineering thus transcends the field of biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aebischer, P.; Winn, S.R.; Tresco, P.A.; Greene, L.A.; Jaeger, C.B. Transplantation of polymer encapsulated neurotransmitter secreting cells: Effect of the encapsulation technique. J. Biomech. Eng. 113:178–183; 1991.

    CAS  PubMed  Google Scholar 

  2. Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J.D. Molecular biology of the cell. 2nd ed. New York: Garland; 1989.

    Google Scholar 

  3. Alexander, R.W.; Nerem, R.M. eds. Mechanical stress effects on vascular cells. Proceedings of Emory/Georgia Techn Workshop. April 20–21, 1991; Atlanta, Georgia.

  4. Ando, J.; Komatsuda, T.; Kamiya, A. Cytoplasmic calcium responses to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell. Dev. Biol. 24:871–877; 1988.

    CAS  PubMed  Google Scholar 

  5. Arathoon, W.R.; Birch, J.R. Large-scale cell culture in biotechnology. Science. 232:1390–1395; 1986.

    CAS  PubMed  Google Scholar 

  6. Bell, E.; Ehrlich, H.; Buttlle, D.; Nakatsuji, T. Living tissue formedin vitro and accepted as skin-equivalent tissue of full thickness. Science. 211:1052–1054; 1981.

    CAS  PubMed  Google Scholar 

  7. Bell, E.; Sher, S.; Hull, B.; Merrill, C.; Rosen, S.; Chamson, A.; Asselineau, D.; Dubertret, L.; Coulomb, B.; Lapiere, C.; Nusgens, B.; Neveus, Y. The reconstitution of living skin. Jour. Invest. Derm. 81:2s-10s; 1983.

    CAS  Google Scholar 

  8. Berk, B.C.; Girard, P.R.; Mitsumata, M.; Alexander, R.W.; Nerem, R.M.; Shear stress alters the genetic growth program of cultured endothelial cells. Proceedings of First World Congress of Biomechanics, La Jolla, CA, August 30-September 4, 1990.

  9. Caplan, B.A.; Schwartz, C.J. Increased endothelial turnover in areas ofin vivo Evans Blue uptake in the pig aorta. Atherosclerosis. 17:401–417; 1973.

    Article  CAS  PubMed  Google Scholar 

  10. Cherry, R.S.; Papoutsakis, E.T. Hydrodynamic effects on cells in agitated tissue culture reactors. Bioprocess Eng. 1:29–41; 1986.

    Article  Google Scholar 

  11. Cima, L.; Vacanti, J.P.; Vacanti, C.; Ingber, D.; Mooney, D.; Langer, R. Tissue engineering by cell transplantation using degradable polymer substrates. J. Biomech. Eng. 113:143–151; 1991.

    CAS  PubMed  Google Scholar 

  12. Colton, C.; Augoustiniatos, E.S. Bioengineering in the development of the hybrid artificial pancreas. J. Biomech Eng. 113:152–170; 1991.

    CAS  PubMed  Google Scholar 

  13. Croughan, M.S.; Hamel, J.F.; Wang, D.I.C. Hydrodynamic effects on animal cells grown in microcarier cultures. Biotech. and Bioeng. 29:130–141; 1987.

    Article  Google Scholar 

  14. D'Amore, P.A.; Orlidge, A.; Herman, I.M. Growth control in the retinal microvasculature. In: Osborne, N.; Chader, G., eds. Progress retinal research. Vol. 7. New York: Pergamon Press; 1987: pp. 233–258.

    Google Scholar 

  15. Davies, P.F.; Remuzzi, A.; Gordon, E.J.; Dewey, C.F., Jr.; Gimbrone, M.A. Jr. Turbulent fluid shear stress induces vascular endothelial cell turnoverin vitro. Proc. Natl. Acad. Sci. 83:2114–2117; 1986.

    CAS  PubMed  Google Scholar 

  16. Dean, R.C., Jr. Opportunities in biotechnology for mechanical engineers. Mech Eng. 109:75–80; 1987.

    Google Scholar 

  17. Dewey, C.F.; Bussolari, S.R.; Gimbrone, M.A.; Davies, P.F. The dynamic response of vascular EC to fluid shear stress. J. Biomech. Eng. 103:177; 1981.

    PubMed  Google Scholar 

  18. Feder, J.; Tolbert, W.R. (eds.) Large-scale mammalian cell culture. New York: Academic Press; 1985.

    Google Scholar 

  19. Freshney, R.I. Culture of animal cells, A manual of basic technique. 2nd ed. New York: Alan R. Liss; 1987.

    Google Scholar 

  20. Friedman, E.A. Toward a hybrid artificial pancreas. Diabetes Care. 12:415–420; 1989.

    CAS  PubMed  Google Scholar 

  21. Geiger, R.V.; Berk, B.C.; Alexander, R.W.; Nerem, R.M. Spatial and temporal analysis of Ca2+ in single bovine aortic endothelial cells (BAEC) exposed to fluid flow. FASEB Journal. 5(4):A529; 1991.

    Google Scholar 

  22. Girard, P.R.; Nerem, R.M. Role of protein kinase C in the transduction of shear stress to alternations in endothelial cell morphology. J. Cell. Biochem. Supplement 14E:210; 1990.

    Google Scholar 

  23. Helmlinger, G.; Geiger, R.V.; Schreck, S.; Nerem, R.M. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J. Biomech. Eng. 113:123–131; 1991.

    CAS  PubMed  Google Scholar 

  24. Jones, P.A. Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells. J. Cell Biol. 74(4):1882–1886; 1982.

    Google Scholar 

  25. Langer, R. New methods of drug delivery. Science. 249:1527–1533; 1990.

    CAS  PubMed  Google Scholar 

  26. Lauffenberger, D.A. Cellular bioengineering. Chemical Engineering Education. pp. 208–213; Fall 1989.

  27. Leff, D. New biological assembly line. In: The cell: Inter- and intra-relationships. An NSF Mosaic Reader. Wayne, New Jersey: Avery Publishing Group, pp. 20–27; 1983.

    Google Scholar 

  28. Levesque, M.J.; Nerem, R.M. Elongation and orientation of cultured endothelial cells in response to shear. J. Biomech. Eng. 107:342–347; 1985.

    Google Scholar 

  29. Levesque, M.J.; Sprague, E.A.; Schwartz, C.J.; Nerem, R.M. The influence of shear stress on cultured vascular EC: The stress response of an anchorage-dependent mammalian cell. Biotech. Prog. 5(1):1–8; 1989.

    Google Scholar 

  30. Levesque, M.J.; Nerem, R.M.; Sprague, E.A. Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials. 11(9):702–707; 1990.

    Article  CAS  PubMed  Google Scholar 

  31. Lim, F.; Sum, A.M. Microencapsulated islets as a bioartificial endocrine pancreas. Science. 210:908–910; 1980.

    CAS  PubMed  Google Scholar 

  32. Maugh, T. The healing touch of artificial skin. Tech. Rev. pp. 49–58; 1985.

  33. Mitsumata, M.; Nerem, R.M.; Alexander, R.W.; Berk, B.C. Shear stress inhibits endothelial cell proliferation by growth arrest in the G0/G1 phase of the cell cycle. FASEB Journal. 5(4):A527; 1991.

    Google Scholar 

  34. Nabel, E.G.; Nabel, G.J. Gene transfer and cardiovascular disease. Trends Cardiovas. Med. 1:12–17; 1991.

    CAS  Google Scholar 

  35. Nerem, R.M.; Girard, P.R. Hemodynamic influences on vascular endothelial biology. Toxic Path. 18(4):572–582; 1990.

    CAS  Google Scholar 

  36. Pool, R. Slow going for blood substitute. Science. 250:1655–1656; 1990.

    CAS  PubMed  Google Scholar 

  37. Prasad, A.R.S.; Nerem, R.M.; Schwartz, C.J.; Sprague, E.A. Stimulation of phosphoinositide hydrolysis in bovine aortic endothelial cells exposed to elevated shear stress. J. Cell Biol. 109:313a; 1989.

    Google Scholar 

  38. Skalak, R. Biomechanics at the cellular level. Annals Biomed. Eng. 12:305–318; 1984.

    CAS  Google Scholar 

  39. Skalak, R.; Fox, C.F. (eds.) Tissue engineering. New York: Alan R. Liss; 1988.

    Google Scholar 

  40. Van Brunt, J. Artificial organs from culture. Biotech. 9:136–137; 1991.

    Google Scholar 

  41. Vanhee, C.; Ziegler, T.; Girard, P.R.; Nerem, R.M. Influence of flow on the proliferation of 3T3 fibroblasts. FASEB Journal. 5(6):A1749; 1991.

    Google Scholar 

  42. Weinberg, C.B.; Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 231:397–399; 1986.

    CAS  PubMed  Google Scholar 

  43. Wilson, J.M.; Birinyi, L.K.; Salomon, R.N.; Libby, P.; Callow, A.D.; Mulligan, R.C. Implantation of vascular grafts lines with genetically modified EC. Science. 244:1344–46; 1989.

    CAS  PubMed  Google Scholar 

  44. Yannas, I.V.; Burke, J.F.; Orgill, D.P.; Skrabut, E.M. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science. 215:174–176; 1982.

    CAS  PubMed  Google Scholar 

  45. Yoshida, Y.; Yamaguchi, T.; Caro, C.G.; Glagov, S.; Nerem, R.M. eds. Role of blood flow in atherogenesis. Tokyo: Springer-Verlag; 1988.

    Google Scholar 

  46. Ziegler, T.; Girard, P.R.; Nerem, R.M. Influence of shear stress on cell division in cultured vascular endothelial monolayers. Proceedings of First World Congress of Biomechanics. August 30, 1990–September 4, 1990; La Jolla, California.

  47. Zilla, P.P.; Fasol, R.D.; Deutsch, M. eds. Endothelialization of vascular grafts. Basel, Switzerland: Karger; 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The lecture was delivered on April 22, 1991 by R.M. Nerem, Parker H. Petit Professor for Engineering in Medicine, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nerem, R.M. Cellular engineering. Ann Biomed Eng 19, 529–545 (1991). https://doi.org/10.1007/BF02367396

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367396

Keywords

Navigation