Skip to main content
Log in

Mechanisms of expiratory flow limitation

  • Respiratory Mechanics
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The role of isovolume pressure flow curves in directing attention to expiratory flow limitation and in the development of the flow volume curve is reviewed. The approaches to modelling the flow-limiting mechanism are traced from the equal pressure point concept to current concepts that suggest that there are two basic mechanisms involved. One is the wave-speed mechanism resulting from the coupling between airway compliance and the pressure drop due to convective acceleration. The other is the coupling between airway compliance and viscous losses in the flow. A computational model for a uniformly emptying lung is presented. The model predicts the pressure distribution in the airways, isovolume pressure flow curves, and flow volume curves. The model tested well against data obtained from excised human lungs. Potential limitations of this model are discussed, as are areas requiring further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dawson, S.V. and E.A. Elliott. Wave-speed limitation on expiratory flow—a unifying concept.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 43:498–515, 1977.

    CAS  Google Scholar 

  2. Dayman, H.G. Mechanics of airflow in health and in emphysema.J. Clin. Invest. 30:1175–1190, 1951.

    CAS  PubMed  Google Scholar 

  3. Elliott, E.A. and S.V. Dawson. Test of wave-speed theory of flow limitation in elastic tubes.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 43:516–522, 1977.

    CAS  Google Scholar 

  4. Fry, D.L. Theoretical considerations of the bronchial pressure-flow-volume relationships with particular reference to the maximum expiratory flow-volume curve.Phys. Med. Biol. 3:174–194, 1958.

    Article  CAS  PubMed  Google Scholar 

  5. Fry, D.L. A preliminary lung model for simulating the aerodynamics of the bronchial tree.Comput. Biomed. Res. 2:111–134, 1969.

    Google Scholar 

  6. Fry, D.L., R.V. Ebert, W.W. Stead, and C.C. Brown. The mechanics of pulmonary ventilation in normal subjects and in patients with emphysema.Am. J. Med. 16:80–97, 1954.

    Article  CAS  PubMed  Google Scholar 

  7. Fry, D.L. and R.E. Hyatt. Pulmonary mechanics. A unified analysis of the relationship between pressure, volume and gasflow in the lungs of normal and diseased human subjects.Am. J. Med. 29:672–689, 1960.

    Article  CAS  PubMed  Google Scholar 

  8. Hyatt, R.E. The interrelationships of pressure, flow, and volume during various respiratory maneuvers in normal and emphysematous subjects.Am. Rev. Respir. Dis. 83:676–683, 1961.

    CAS  PubMed  Google Scholar 

  9. Hyatt, R.E., J.R. Rodarte, J. Mead, and T.A. Wilson. Changes in lung mechanics: flow-volume relations. In:The Lung in the Transition Between Health and Disease, edited by P.T. Macklem and S. Permutt. New York: Marcel Dekker, 1979, pp. 73–112.

    Google Scholar 

  10. Hyatt, R.E., D.P. Schilder, and D.L. Fry. Relationship between maximum expiratory flow and degree of lung inflation.J. Appl. Physiol. 13:331–336, 1958.

    CAS  PubMed  Google Scholar 

  11. Hyatt, R.E., T.A. Wilson, and E. Bar-Yishay. Prediction of maximal expiratory flow in excised human lungs.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 48:991–998, 1980.

    CAS  Google Scholar 

  12. Lambert, R.K. and T.A. Wilson. A model for the elastic properties of the lung and their effect on expiratory flow.J. Appl. Physiol. 34:34–48, 1973.

    CAS  PubMed  Google Scholar 

  13. Lambert, R.K., T.A. Wilson, R.E. Hyatt, and J.R. Rodarte. A computational model for expiratory flow.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 52:44–56, 1982.

    CAS  Google Scholar 

  14. Macklem, P.T., R.G. Fraser, and W.G. Brown. Bronchial pressure measurements in emphysema and bronchitis.J. Clin. Invest. 44:897–905, 1965.

    CAS  PubMed  Google Scholar 

  15. Macklem, P.T. and N.J. Wilson. Measurement of intrabronchial pressure in man.J. Appl. Physiol. 20:653–663, 1965.

    CAS  PubMed  Google Scholar 

  16. Mead, J., T. Takishima, and D. Leith. Stress distribution in lungs: A model of pulmonary elasticity.J. Appl. Physiol. 28:596–608, 1970.

    CAS  PubMed  Google Scholar 

  17. Mead, J., J.M. Turner, P.T. Macklem, and J.B. Little. Significance of the relationship between lung recoil and maximum expiratory flow.J. Appl. Physiol. 22:95–108, 1967.

    CAS  PubMed  Google Scholar 

  18. Mink, S., M. Ziesmann, and L.D.H. Wood. Mechanisms of increased maximum expiratory flow during HeO2 breathing in dogs.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 47:490–502, 1979.

    CAS  Google Scholar 

  19. Pardaens, J., K.P. Van de Woestijne, and J. Clement. A physical model of expiration.J. Appl. Physiol. 33:479–490, 1972.

    CAS  PubMed  Google Scholar 

  20. Pedersen, O.F. and T.M. Nielsen. The compliance curve for the flow limiting segments of the airway. I. Model studies.Acta Physiol. Scand. 99:385–398, 1977.

    CAS  PubMed  Google Scholar 

  21. Pride, N.B., S. Permutt, R.L. Riley, and B. Bromberger-Barnea. Determinants of maximal expiratory flow from the lungs.J. Appl. Physiol. 23:646–662, 1967.

    CAS  PubMed  Google Scholar 

  22. Reynolds, D.B. and J.S. Lee. Modeling study of the pressure-flow relationship of the bronchial tree.Fed. Proc. Fed. Am. Soc. Exp. Biol. 38:1444, 1979.

    Google Scholar 

  23. Sasaki, H., T. Takishima, and T. Sasaki. Influence of lung parenchyma on dynamic bronchial collapsibility of excised dog lung.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 42:699–705, 1977.

    CAS  Google Scholar 

  24. Shapiro, A.H. Steady flow in collapsible tubes.J. Biomech. Eng. 99:126–147, 1977.

    Google Scholar 

  25. Staats, B.A., T.A. Wilson, S.J. Lai-Fook, J.R. Rodarte, and R.E. Hyatt. Viscosity and density dependence during maximal flow in man.J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48:313–319, 1980.

    CAS  Google Scholar 

  26. Weibel, E.R.Morphometry of the Human Lung. New York: Academic Press, 1963, pp. 110–124.

    Google Scholar 

  27. Wilson, T.A., R.E. Hyatt, and J.R. Rodarte. The mechanisms that limit expiratory flow.Lung 158:193–200, 1980.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyatt, R.E., Rodarte, J.R., Wilson, T.A. et al. Mechanisms of expiratory flow limitation. Ann Biomed Eng 9, 489–499 (1981). https://doi.org/10.1007/BF02364766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364766

Keywords

Navigation