Skip to main content
Log in

A trace formula for the scalar product of Hecke series and its applications

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A trace formula expressing the mean values of the form (k=2,3,...)

$$\frac{{\Gamma (2k - 1)}}{{(4\pi )^{2k - 1} }}\sum\limits_f {\frac{{\lambda _f (d)}}{{\left\langle {f,f} \right\rangle }}H_f^{(x)} (s_1 )\frac{{}}{{H_f^{(x)} (\bar s_2 )}}}$$

via certain arithmetic means on the group Г0(N1) is proved. Here the sum is taken over a normalized orthogonal basis in the space of holomorphic cusp forms of weight 2k with respect to Г0(N1). By H (x)f (s) we denote the Hecke series of the form f, twisted with the primitive character χ (mod N2), and λf(d), (d, N1N2)=1, are the eigenvalues of the Hecke operators

$$T_{2k} (d)f(z) = d^{k - 1/2} \sum\limits_{d_1 d_2 = d} {d_2^{ - 2k} } \cdot \sum\limits_{m(\bmod d_2 )} {f\left( {\frac{{d_1 z + m}}{{d_2 }}} \right)}$$

. The trace formula is used for obtaining the estimate

$$\frac{{d^l }}{{dt^l }}H_f^{(x)} \left( {\frac{1}{2} + it} \right) \ll _{\varepsilon ,k,l,N_1 } (1 + \left| t \right|)^{1/2 + \varepsilon } N_2^{1/2 - 1/8 + \varepsilon }$$

for the newform f for all ε>0, l=0,1,2,.... This improves the known result (Duke-Friedlander-Iwaniec, 1993) with upper bound (1+|t|)2N 1/2−1/22+ε2 on the right-hand side. As a corollary, we obtain the estimate

$$c(n) \ll _\varepsilon n^{1/4 - 1/16 + \varepsilon }$$

for the Fourier coefficients of holomorphic cusp forms of weight k+1/2, which improves Iwaniec' result (1987) with exponent 1/4–1/28+ε. Bibliography: 25 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Deligne, “Formes modulaires et represéntations deGL(2),”Lect. Notes Math.,349, 55–105 (1973).

    MATH  MathSciNet  Google Scholar 

  2. P. Deligne, “La conjecture de Weil. I,”Publ. Math. Inst. Hautes Études Sci.,53, 273–307 (1974).

    MathSciNet  Google Scholar 

  3. W. J. Duke, J. Friedlander, and Iwaniec H., “Bounds for automorphicL-function. I,”Invent. Math.,112, 1–8 (1993).

    Article  MathSciNet  Google Scholar 

  4. V. A. Bykovskii and A. I. Vinogradov, “Estimations of Waldspurger's series at the critical point,” in:Automorphic Functions and their Applications, Vladivostok (1989), pp. 139–159.

  5. J.-L. Waldspurger, “Correspondance de Shimura,”J. Math. Pures Appl. (9),59, 1–132 (1980).

    MATH  MathSciNet  Google Scholar 

  6. J.-L. Waldspurger, “Sur les coefficients de Fourier des formes modulaires de poids demi-entier,”J. Math. Pures Appl. (9),60, 375–484 (1981).

    MATH  MathSciNet  Google Scholar 

  7. B. Gross and D. Zagier, “Heegner points and the derivatives ofL-series,”Invent. Math.,84, 225–320 (1986).

    MathSciNet  Google Scholar 

  8. B. Gross, W. Kohnen, and D. Zagier, “Heegner points and derivatives ofL-series. II,”Math. Ann.,278, 497–562 (1987).

    Article  MathSciNet  Google Scholar 

  9. W. Kohnen, “Fourier coefficients of modular forms of half-integral weight,”Math. Ann.,271, 237–268 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Iwaniec, “Fourier coefficients of modular forms of half-integral weight,”Invent. Math.,87, 385–403 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  11. V. A. Kolyvagin, =ldFiniteness ofE(Q) and (E, Q) for a subclass of Weil curves,”Izv. Akad. Nauk SSSR, Ser. Mat.,52, 522–540 (1988).

    Google Scholar 

  12. N. V. Kuznetsov, “Convolution of Fourier coefficients of Eisenstein-Maass series,”Zap. Nauchn. Semin. LOMI,129, 43–84 (1983).

    MATH  Google Scholar 

  13. D. R. Heath-Brown, “Hybrid bounds for DirichletL-functions,”Invent. Math.,47, 149–170 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  14. D. R. Heath-Brown, “The fourth power moment of the Riemann zeta-function,”Proc. London Math. Soc. (3),38, 385–422 (1979).

    MATH  MathSciNet  Google Scholar 

  15. H. Davenport,Multiplicative Number Theory, 2nd ed., New York (1980).

  16. A. Weil, “Sur les courbes algébriques et les variétés qui s'en déduisent,” Hermann, Paris (1948).

    Google Scholar 

  17. S. A. Stepanov,Arithmetic of Algebraic Curves [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  18. D. A. Burgess, “On character sums andL-series. I, II,”Proc. London Math. Soc. (3),12, 193–196 (1962);13, 524–536 (1963).

    MATH  MathSciNet  Google Scholar 

  19. E. C. Titchmarch,The Theory of Riemann Zeta-Functions, Oxford (1951).

  20. A. Erdélyi et al.,Higher Transcendental Functions. I, II, New York (1953).

  21. R. A. Rankin,Modular Forms and Functions, Cambridge (1977).

  22. G. Shimura,Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, New Jersey (1971).

  23. A. Selberg, “On the estimation of Fourier coefficients of modular forms,”Proc. Symp. Pure Math. VIII, 1–15 (1965).

    MathSciNet  Google Scholar 

  24. H. Iwaniec, “Small eigenvalues of Laplacian for Г0(N),”Acta Arithm.,16, 65–82 (1990).

    MathSciNet  Google Scholar 

  25. H. Iwaniec and P. Sarnak, “L -norms of eigenfunctions of arithmetic surfaces,”Ann. Math.,141, 301–320 (1995).

    MathSciNet  Google Scholar 

Download references

Authors

Additional information

Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 226, 1996, pp. 14–36.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykovskii, V.A. A trace formula for the scalar product of Hecke series and its applications. J Math Sci 89, 915–932 (1998). https://doi.org/10.1007/BF02358528

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02358528

Keywords

Navigation