Skip to main content
Log in

Ion implantation in semiconductors investigated by nuclear spectroscopy methods

  • Ion Implantation
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Nuclear methods have proved to be very useful for structural investigations of implanted layers. Through the hyperfine interaction of the impurity atoms, valuable information can be obtained on the charge state, location and the vibrational state of implanted atoms. Changes in the atomic locations after various annealing processes were successfully understood by applying the Mössbauer effect and perturbed angular correlation. This review pays special attention to the physical interactions which determine the location of implanted atoms, the ballistics, the size and the chemical effects. The structure of disordered layers formed after implantation is also reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lindhard, M. Scharff and H.E. Schiott, Kgl. Dan. Vid. Selsk. Mat. Fys. Medd. 33(1963)14.

    Google Scholar 

  2. D.A. Thompson, Rad. Eff. 56(1981)105.

    Google Scholar 

  3. See, e.g. H. de Waard, in:Mössbauer Spectroscopy and its Applications (IAEA Panel Proceedings Series, Vienna, 1972) p. 129.

  4. W. Hume-Rothery, R.E. Smallman and C.W. Haworth,Structure of Metals and Alloys (Institute of Metals, London, 1969).

    Google Scholar 

  5. D.K. Sood, Phys. Lett. 68A(1978)469.

    ADS  Google Scholar 

  6. A.R. Miedema, F.R. Boer and P.F. de Chatel, J. Phys. F3(1973)1558.

    ADS  Google Scholar 

  7. E.N. Kaufmann, R. Vianden, J.R. Chelikowsky and J.C. Phillips, Phys. Rev. Lett. 39(1977)1671.

    Article  ADS  Google Scholar 

  8. B.D. Sawicka, Nucl. Instr. 182/183(1981)1039.

    Article  Google Scholar 

  9. A.R. Miedema and A.K. Niesen, Physica 114B(1982)367.

    Google Scholar 

  10. V.A. Singh and A. Zunger, Phys. Rev. B25(1982)907.

    ADS  Google Scholar 

  11. I. Dézsi, R. Coussement, G. Langouche, H. Pattyn, S. Reintsema, M. Van Rossum and J. De Bruyn, J. de Phys. 40 C2(1979)573.

    Google Scholar 

  12. R.S. Nelson, in:Application of Ion Beams to Metals, ed. S.T. Picraux, E.P. EerNisse and F.L. Vooks (Plenum, New York, 1974) p. 221.

    Google Scholar 

  13. G. Weyer, J.W. Petersen, S. Damgaard and H.L. Nielsen, Phys. Rev. Lett. 44(1980) 155.

    Article  ADS  Google Scholar 

  14. G.J. Kemerink, H. de Waard, L. Niesen and D.O. Boerma, Hyp. Int. 14(1983)53.

    Google Scholar 

  15. K.L. Brower and W. Beezhold, J. Appl. Phys. 43(1972)3499.

    Article  Google Scholar 

  16. G. Carter and W.A. Grant,Ion implantation of Semiconductors (Edward Arnold, London, 1976) p. 121.

    Google Scholar 

  17. J.R. Dennis and E.B. Hall, J. Appl. Phys. 49(1978)1119.

    Article  ADS  Google Scholar 

  18. V.V. Titov, Phys. Stat. Sol. (a) 63(1981)11.

    Google Scholar 

  19. M.L. Swanson, J.R. Parsons and C.W. Hoelke, Rad. Eff. 9(1971)249.

    Google Scholar 

  20. R. Kelly and H.M. Naguib,Proc. Int. Conf. on Atomic Collision Phenomena in Solids (North-Holland, Amsterdam, 1970) p. 172.

    Google Scholar 

  21. H.M. Naguib and R. Kelly, Rad. Eff. 25(1975)1.

    Google Scholar 

  22. G. Carter, D.G. Armour, S.E. Donelly and R.P. Webb, Rad. Eff. 36(1978)1.

    Google Scholar 

  23. J.W. Mayer, L. Eriksson and J.A. Davies,Ion implantation in Semiconductors (Academic Press, New York, 1970).

    Google Scholar 

  24. J.A. Olley and A.D. Joffe, in:Ion Implantation in Semiconductors, ed. I. Ruge and J. Graul (Springer, Berlin, 1971) p. 248.

    Google Scholar 

  25. L.C. Kimerling and J.M. Poate, Inst. Phys. Conf. Series No. 23 (1975) p. 130.

    Google Scholar 

  26. D.A. Thompson, A. Golanski, K.H. Haugen and D.V. Stevanovic, Rad. Eff. 52(1980)69

    Google Scholar 

  27. B.D. Sawicka and J. Sawicki, Phys. Letts. 64A(1977)311.

    ADS  Google Scholar 

  28. G. Langouche, I. Dézsi, M. Van Rossum, J. De Bruyn and R. Coussement, Phys. Stat. Sol. (b)

  29. J. De Bruyn, R. Coussement, I. Dézsi, G. Langouche and M. Van Rossum, Hyp. Int. 10(1981)973.

    Article  Google Scholar 

  30. G.J. Kemerink, F. Pleiter and A.R. Arends, Hyp. Int. 10(1981)

  31. B.D. Sawicka, J. Sawicki and J. Stanek, J. de Phys. 12 C6(1976)879.

    Google Scholar 

  32. G. Langouche, I. Dézsi, M. Van Rossum, J. De Bruyn and R. Coussement, Phys. Stat. Sol. (b) 93(1979)K107.

    Google Scholar 

  33. O. Massenet and H. Daver, Sol. State Commun. 21(1977)37.

    Article  Google Scholar 

  34. R. Manila and A. Dévényi, Phys. Stat. Sol. (b) 102(1980)61.

    Google Scholar 

  35. K. Winterbon,Ion Implantation Range and Energy Deposition Distributions (Plenum, New York, 1975).

    Google Scholar 

  36. R.S. Walker and D.A. Thompson, Rad. Eff. 37(1978)113.

    Google Scholar 

  37. L.M. Howe, M.H. Rainville, H.K. Haugen and D.A. Thompson, Nucl. Instr. Meth. 170(1980)419; 182/183(1981)143.

    Article  Google Scholar 

  38. P. Boolchand, B.B. Triplett and S.S. Hanna, in:Mössbauer Effect Methodology, Vol. 9, ed. I.J. Gruverman, C.W. Seidel and D.K. Dieterly (Plenum, New York, 1974) p. 53.

    Google Scholar 

  39. I. Dézsi, M. Van Rossum, J. De Bruyn, R. Coussement and G. Langouche, Phys. Lett. 87A(1982)193.

    ADS  Google Scholar 

  40. I. Dézsi, M. Van Rossum, R. Coussement and G. Langouche, Proc. Ind. Nat. Sci. Acad., Vol. S.360 (1982).

  41. L. Csepregi, E.F. Kennedy, J.W. Mayer and T.W. Sigmon, J. Appl. Phys. 49(1978) 3906.

    Article  ADS  Google Scholar 

  42. S.V. Campisano, G. Foti, P. Baeri, M.G. Grimaldi and E. Rimini, Appl. Phys. Lett. 37(1980)719.

    ADS  Google Scholar 

  43. I. Dézsi, M. Van Rossum, G. Langouche and R. Coussement, Appl. Phys. Lett., to be published.

  44. D.A. Thompson, A. Golanski, K.H. Haugen, D.V. Stevanovic, G. Carter and C.E. Christodoulides, Rad. Eff. 52(1980)69.

    Google Scholar 

  45. G.J. Kemerink, Thesis (University of Groningen, 1980).

  46. G.J. Kemerink and H. de Waard, private communication.

  47. C.H. Bennett, P. Chaudhari and V. Moruzzi, Phil. Mag. 40A(1979)485.

    Google Scholar 

  48. M. Van Rossum, I. Dézsi, K.C. Mishra, T.P. Das and A. Coker, Phys. Rev. B 24(1982)4571.

    Google Scholar 

  49. N.F. Mott and E.A. Davis,Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1971) p. 37.

    Google Scholar 

  50. C.S. Kim and P. Boolchand, Phys. Rev. B19(1979)3187.

    ADS  Google Scholar 

  51. M. Van Rossum, I. Dézsi, G. Langouche, J. De Bruyn and R. Coussement, in:Nucl. and Electron Res. Spec. Applied to Materials Science, ed. E.N. Kaufmann and G.K. Shenoy (Elsevier, Amsterdam, 1981) p. 359.

    Google Scholar 

  52. L.K. Nanver, G. Weyer and B.I. Deutch, Z. Phys. B47(1982)103.

    Article  Google Scholar 

  53. J. De Bruyn, Thesis (University of Leuven, 1980).

  54. M. Van Rossum, J. De Bruyn, G. Langouche, M. de Potter and R. Coussement, Phys. Lett. 73A(1979)127.

    ADS  Google Scholar 

  55. G. Langouche, I. Dézsi, M. Van Rossum, M. de Potter, J. De Bruyn, D. Schroyen and R. Coussement, Nucl. Instr. Meth. 199(1982)401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dézsi, I. Ion implantation in semiconductors investigated by nuclear spectroscopy methods. Hyperfine Interact 26, 1051–1067 (1985). https://doi.org/10.1007/BF02354650

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02354650

Keywords

Navigation