Skip to main content
Log in

New directions in low temperature nuclear orientation

  • Nuclear Orientation
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The basis of the low temperature nuclear orientation technique is summarized. The present limitations on accessible temperatures and the orders of magnitude of hyperfine interactions in the metallic systems currently studied are discussed briefly. The broad applicability to many elements and the high sensitivity of this singles counting method are emphasized.

Specific recent developments are discussed in more detail. The use of a dilution refrigerator to cool to ≈ 10mK nuclei of isotopes far from stability ‘on-line’, after production in an accelerator and electromagnetic selection, is a major extension of the method. The minimum half-life is now limited by the nuclear spinlattice relaxation time, typically of order 10–100 s at 10 mK. Aspects of these experiments are considered and recent results given for Cs and I isotopes.

Secondly, the extension of the related technique of nuclear magnetic resonance or oriented nuclei (NMR/ON) to antiferromagnetic insulators is described. A new cooling mechanism involving nuclear-magnon coupling gives access to much lower temperatures than previously reached in these systems. Recent precision work on MnCl2, 4H2O is discussed, along with its possible extension to nuclei of lanthanide elements.

Finally, the use of nuclear orientation to study ordering below 10 mK of enhanced nuclear moment systems is briefly surveyed, with HoVO4 as the test case. NMR/ON experiments at high pressure are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Vanneste, C. Nuytten, D. Vandeplassche, E. van Walle and J. Wouters, Hyp. Int. 15/16 (1983)947.

    Google Scholar 

  2. E. Klein, Hyp. Int. 15/16(1983)557.

    Google Scholar 

  3. K. Krane and R.M. Steffen, Phys. Rev. C2(1970)724.

    Article  ADS  Google Scholar 

  4. G.J. Bowden, I.A. Campbell, N. Nambudripad and N.J. Stone, Phys. Rev. B20(1979)352

    Article  ADS  Google Scholar 

  5. K. Krane, Los Alamos Lab. Rep. LA4677(1971).

  6. N. Kerley, Oxford Instrument Company Ltd., Osney Mead, Oxford, U.K., private communication.

  7. G.N. Rao, Hyp. Int. 7(1979)141.

    Article  Google Scholar 

  8. K. Krane, Hyp. Int. 15/16(1983)1069.

    Google Scholar 

  9. R. Vianden, Hyp. Int. 15/16(1983)1081.

    Google Scholar 

  10. J. Rikovska, Hyp. Int., this volume.

  11. P.G.E. Reid, N.J. Stone and M. Sott, Phys. Lett. 25A(1967)456.

    ADS  Google Scholar 

  12. P. Herzog, H.-R. Folle, K. Freitag, A. Kluge, M. Rauschenbach and E. Bodenstedt, Nucl. Instr. Meth. 155(1979)421.

    Google Scholar 

  13. P. Herzog, Hyp. Int. 8(1980)215.

    Article  Google Scholar 

  14. D. Visser, L. Niesen, H. Postma and H. de Waard, Phys. Rev. Lett. 41(1978)882

    Article  ADS  Google Scholar 

  15. H. de Waard, Physica Scripta 11(1975)157.

    ADS  Google Scholar 

  16. P. Herzog, in:Low Temperature Nuclear Orientation, ed. N.J. Stone and H. Postma (North-Holland, Amsterdam) to be published.

  17. P. Herzog, K. Freitag, C. Herrmann and K. Schlosser, Hyp. Int. 15/16(1983)329; P. Herzog, H. Walitzki, K. Freitag, H. Hildebrand and K. Schlosser, Z. Phys. A311(1983)351.

    Google Scholar 

  18. F. Puhlhofer, Nucl. Phys. A280(1977)267.

    ADS  Google Scholar 

  19. H. Pattyn, R. Coussement, J. Odeurs, E. Schoeters, R.E. Silverans and L. Vanneste, Hyp. Int. 2(1976)362.

    Article  Google Scholar 

  20. Table of Isotopes, ed. Lederer and Shirley (Wiley Interscience, 1977).

  21. N.J. Stone, V.R. Green, T. Shaw, P.M. Walker, I.S. Grant, W.D. Hamilton and J. Rikovska, SERC Daresbury Laboratory Annual Report (1984); and to be published in Phys. Lett. B.

  22. P.K. James, N.J. Stone and H.R. Foster, Phys. Lett. 48A(1974)237.

    ADS  Google Scholar 

  23. J. de Jong and H. Postma, Hyp. Int. 15/16(1983)69.

    Google Scholar 

  24. S.R. Rientsema, S.A. Drentie, P. Schurer and H. de Waard, Rad. Effects 24(1975) 145.

    Google Scholar 

  25. The ISOLDE collaboration, Nucl. Phys. A367(1981)1.

    ADS  Google Scholar 

  26. J. Wouters, private communication.

  27. J.M. Daniels, J.C. Giles and M.A.R. Leblanc, Can. J. Phys. 39(1961)53.

    ADS  Google Scholar 

  28. B.G. Turrell, R.L.A. Gorling and P.W. Martin, Can. J. Phys. 55(1977)1526.

    ADS  Google Scholar 

  29. A. Kotlicki and B.G. Turrell, Hyp. Int. 11(1981)197.

    Article  Google Scholar 

  30. L. Niesen and W.J. Huiskamp, Physica 50(1970)259.

    Article  Google Scholar 

  31. W. van Rijswijk, F.G. van den Berg, W.R. Joosten and W.T. Huiskamp, Hyp. Int. 15/16(1983)325.

    Google Scholar 

  32. A.L. Allsop, M. de Araujo, G.J. Bowden, R.G. Clark and N.J. Stone, J. Phys. C 17(1984)915.

    Article  ADS  Google Scholar 

  33. M. de Araujo, R.G. Clark, M. Shott and N.J. Stone, to be published.

  34. K. Andres and E. Bucher, J. Appl. Phys. 42(1971)1522.

    Article  Google Scholar 

  35. A. Abragam and B. Bleaney, Proc. Roy. Soc. London A387(1983)221.

    ADS  Google Scholar 

  36. A.L. Allsop, B. Bleaney, G.J. Bowden, N. Nambudripad, N.J. Stone and H. Suzuki, Proc. Roy. Soc. London A372(1980)19.

    ADS  Google Scholar 

  37. R.G. Clark, Thesis, University of New South Wales, Sydney, Australia (1984).

  38. P.C. Reidi and G.D. Webber, J. Phys. F11(1981)1669.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, N.J. New directions in low temperature nuclear orientation. Hyperfine Interact 26, 995–1020 (1985). https://doi.org/10.1007/BF02354647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02354647

Keywords

Navigation