Skip to main content
Log in

Detailed study of the γ-radiolysis of nitrilotriacetic acid in a simulated, mixed nuclear waste

  • Nuclear Energy
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Gamma radiolysis of a simulant of an actual mixed waste, composed of nitrilotriacetic acid (NTA) and an inorganic matrix, at γ-doses ranging from 0–7.5·106±10% R in a60Co-source, resulted in total NTA degradation, but 10.8% of the simulant's original organic content remained. Radiolysis yielded 4 chelator fragments and 2 carboxylic acids, all formed at different rates. The chelator fragment N-(Methylamine)iminodiacetic acid (MAIDA) dominated at low γ-doses, while N-[N′-amino(2-iminoethyl)]iminodiacetic acid (AIEIDA) dominated at high γ-doses. Chemical degradation control studies revealed that the harsh chemistry of the inorganic matrix caused only 20.7% NTA degradation and formation of only 2 chelator fragments, while the heat generated by the60Co-source (95°C) had little additional impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Toste, J. Radioanal. Nucl. Chem., 194 (1995) 25.

    CAS  Google Scholar 

  2. B. A. Tomkins, J. E. Caton Jr., M. D. Edwards, M. E. Garcia, R. L. Schenley, C. A. Treese, W. H. Griest, Anal. Chem., 62 (1990) 253.

    Article  CAS  Google Scholar 

  3. N. K. Taylor (Ed.), Organics in Radwaste, Harwell Laboratory, Oxfordshire, England, AERE R 13079, 1988.

    Google Scholar 

  4. A. P. Toste, T. J. Lechner-Fish, D. J. Hendren, R. D. Scheele, W. G. Richmond, J. Radioanal. Nucl. Chem. 123 (1988) 149.

    CAS  Google Scholar 

  5. R. E. Gephart, R. E. Lungren, Hanford Tank Clean Up: A Guide to Understanding the Technical Issues; Pacific Northwest Laboratory: Richland, WA, PNL-10773, 1995.

    Google Scholar 

  6. G. R. Choppin, A. B. Johnson, J. F. Remark, A. E. Martell, Literature Réview of Dilute Decontamination Processes for Water Cooled Nuclear Reactors, Electric Power Research Institute (EPRI), Palo Alto, CA, EPRI-NP-1033, 1979.

    Google Scholar 

  7. E. T. Premuzic, H. K. Manaktala, Scoping Study of the Alternatives for Managing Waste Containing Chelating Decontamination Chemicals; National Technical Information Service (NTIS), Springfield, VA, NUREG/CR-2721, 1984.

    Google Scholar 

  8. A. P. Toste, J. Radioanal. Nucl. Chem., 161 (1992) 549.

    CAS  Google Scholar 

  9. A. P. Toste, K. J. Lechner-Fish, Waste Managem., 13 (1993) 237.

    CAS  Google Scholar 

  10. A. P. Toste, K. J. Polach, T. W. White, Waste Managem., 14 (1994) 27.

    CAS  Google Scholar 

  11. A. P. Toste, J. Radioanal. Nucl. Chem., to be published.

  12. T. H. Dunning, Jr., E. P. Horowitz, D. M. Strachan, E. H. Ashby, E. J. Hart, D. A. Reynolds, W. W. Schultz, D. D. Siemer, W. J. Thomson, D. S. Trent, R. M. Wallace, Chemical and Physical Processes in Tank 241-SY-101: A Preliminary Report, Pacific Northwest Laboratory, Richland, WA, PNL-7595, 1991.

    Google Scholar 

  13. J. L. Means, D. A. Crerar, J. O. Duguid, Science, 200 (1978) 477.

    Google Scholar 

  14. T. F. Rees, J. M. Cleveland, in: Environmental Migration of Long-Lived Radionuclides, IAEA, Vienna, Austria, IAEA-SM-257/66, 1982, p. 41.

    Google Scholar 

  15. R. W. D. Killey, J. O. McHugh, D. R. Champ, E. L. Cooper, J. L. Young, Environ. Sci. Technol., 18 (1984) 148.

    CAS  Google Scholar 

  16. A. P. Toste, L. J. Kirby, W. H. Rickard, D. E. Robertson, in: Radioactive Waste Management, International Atomic Energy Agency (IAEA): Vienna, Austria, IAEA-CN-43/470, 1984, Vol. 5, p. 213.

  17. S. F. Marsh, Z. V. Svitra, S. M. Bowen, Effects of Soluble Organic Complexants and Their Degradation Products on the Removal of Selected Radionuclides from High-Level Waste. Parts I–IV, LA-1286 (Part I), LA-12943 (Part II) and LA-13000 (Parts III–IV), Los Alamos National Laboratory: Los Alamos, NM, 1995.

    Google Scholar 

  18. A. P. Toste, J. Adv. Ox. Tech., submitted for publication.

  19. S. N. Bhattacharyya, K. P. Kurdu, Intern. Radiat. Phys. Chem., 4 (1972) 31.

    CAS  Google Scholar 

  20. A. E. Martell, R. J. Motekartes, A. R. Fried, J. S. Wilson, D. T. MacMillan, Can. J. Chem., 53 (1975) 3471.

    CAS  Google Scholar 

  21. C. H. Delegard, Identity of the HEDTA Decomposition Product in Synthetic Hanford High-level Wastes, Rockwell Hanford Operations, Hanford, WA, RHO-RE-TI-062, 1983.

  22. T. Kh. Margulova, S. A. Tevlin, Y. E. Lebedev, A. I. Melaev, Thermal Eng., 19 (3) (1972) 15.

    Google Scholar 

  23. L. D. Anstine, The Dilute Chemical Decontamination Program, Quarterly Progress Reports, General Electric Company, Pleasanton, CA, NEDC-12705-2-7, 1978–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toste, A.P. Detailed study of the γ-radiolysis of nitrilotriacetic acid in a simulated, mixed nuclear waste. J Radioanal Nucl Chem 239, 433–439 (1999). https://doi.org/10.1007/BF02349046

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02349046

Keywords

Navigation