Skip to main content
Log in

The contribution of the anterior cruciate ligament to knee joint kinematics: Evaluation of its in situ forces using a robot/universal force-moment sensor test system

  • Instructional Lecture
  • Published:
Journal of Orthopaedic Science

Abstract

Damage to one of the major soft tissue structures of the knee joint, namely, the anterior cruciate ligament (ACL), can lead to significant changes in joint kinematics, which the patient perceives as instability. In this manuscript, we illustrate the importance of the anatomical complexity and biomechanical function of the ACL in knee joint kinematics. Further, we introduce a new test system whereby the in situ forces of the ACL and multiple-degree of freedom (DOF) knee kinematics are determined. Using a robotic manipulator coupled with a universal force-moment sensor (UFS), these forces can be determined directly and without making mechanical contact with the tissue. We have found that the in situ force in the human ACL in response to 110N of anterior tibial load decreases significantly with knee flexion, changing from 110.6±14.8N at 15° of flexion to 71.1±29.5 N at 90° of flexion. Distribution of the in situ force within the human ACL was determined by consistently defining its distribution in anteromedial (AM) and posterolateral (PL) bundles of the ACL. In situ forces in the PL bundle in response to 110N of anterior tibial load showed a maximum of 75.2±18.3 N at 15°, and were significantly larger than those in the AM bundle. On the contrary, in situ forces in the AM bundle varied from a maximum of 47.4±34.2N at 60° to a minimum of 32.6±13.3N at 0°. In the porcine ACL, the magnitude of in situ force was not significantly affected as the constraints varied from 1-DOF to 5-DOF. However, the directions of the force were significantly different between 1-DOF and 5-DOF conditions. The ACL reconstruction study has shown that anatomical (proximal) ACL graft fixation in the tibial tunnel more closely reproduced the knee kinematics and in situ force of the native ACL than those in central and distal fixations. These findings have important implications in terms of the mechanisms of ACL injuries, complexity of the ACL function, and anatomy-and biomechanics-based approaches to ACL reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed AM, Burke DL, Duncan NA, et al. Ligament tension pattern in the flexed knee in combined passive anterior tibial translation and axial rotation. J Orthop Res 1992;10:854–67.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed AM, Hyder A, Burke DL, et al. In-vitro ligament tension pattern in the flexed knee in passive loading. J Orthop Res 1987;5:217–30.

    CAS  PubMed  Google Scholar 

  3. Amis AA, Dawkins GPC. Functional anatomy of the anterior cruciate Ligament: Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg 1991;73B:260–7.

    Google Scholar 

  4. Andersson C, Odensten M, Gillquist J. Knee function after surgical or nonsurgical treatment of cute rupture of the anterior cruciate ligament: A randomized study with a long-term follow-up period. Clin Orthop 1991;8:255–63.

    Google Scholar 

  5. Arnoczky SP, Matyas JR, Buckwalter JA, et al.. Anatomy of the anterior cruciate ligament. In: Jackson DW, editor. The anterior cruciate Ligament: Current and future concepts 1st ed. New York: Raven, 1993:5–22.

    Google Scholar 

  6. Bartlett EC. Arthroscopic repair and augmentation of the anterior cruciate ligament in cadaver knees. Clin Orthop 1983;172.

  7. Beynnon BD, Stankevich CJ, Fleming BC, et al. The development and initial testing of a new sensor to simultaneously measure strain and pressure in tendons and ligaments. Combined meeting ORS-USA, Japan and Canada, 1991; Banff, Canada 1:104.

    Google Scholar 

  8. Buss DD, Warren RF, Wickiewicz TL, et al. Arthroscopically assisted reconstruction of the anterior cruciate ligament with use of autogenous patellar-ligament graft. J Bone Joint Surg 1993;75A:1346–55.

    Google Scholar 

  9. Butler DL. Anterior cruciate ligament: Its normal response and replacement. J Orthop Res 1989;7:910–21.

    CAS  PubMed  Google Scholar 

  10. Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee: A biomechanical study. J Bone Joint Surg 1980;62A:259–70.

    Google Scholar 

  11. Bylski-Austrow DI, Grood ES, Hefzy MS, et al. Anterior cruciate ligament replacements: A mechanical study of femoral attachment location, flexion angle at tensioning, and initial tension. J Orthop Res 1990;8:522–31.

    Article  CAS  PubMed  Google Scholar 

  12. Campbell W. Reconstruction of the ligaments of the knee. Am J Surg 1939;43:473–80.

    Article  Google Scholar 

  13. Cho KO. Reconstruction of the anterior cruciate ligament by semitendinosis tenodesis. J Bone Joint Surg 1975;57A:608–12.

    Google Scholar 

  14. Clancy WG, Nelson DA, Reider B, et al. Anterior cruciate ligament reconstruction using one-third of the patellar ligament, augmented by extra-articular tendon transfers. J Bone Joint Surg 1982;64A:352–9.

    Google Scholar 

  15. Clark JM, Sidles JA. The interrelation of fiber bundles in the anterior cruciate ligament. J Orthop Res 1990;17:180–8.

    Google Scholar 

  16. Cummings JF, Holden JP, Grood ES et al. In-vivo measurement of patellar tendon forces and joint position in the goat model. Trans ORS 1991;16:601.

    Google Scholar 

  17. Daniel DM, Stone ML, Barnet P, et al. Use of the quadriceps active test to diagnose posterior cruciate ligament disruption and measure posterior laxity of the knee. J Bone Joint Surg 1988;70A: 386–91.

    Google Scholar 

  18. Daniel DM, Stone ML, Dobson BE, et al. Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 1994;22:632–44.

    CAS  PubMed  Google Scholar 

  19. Daniel DM, Stone ML, Sachs R, et al. Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J. Sports Med 1985;13:401–7.

    CAS  PubMed  Google Scholar 

  20. Feagin JA Jr, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med 1976;4:95–100.

    PubMed  Google Scholar 

  21. Finsterbush A, Frankl U, Matan Y, et al. Secondary damage to the knee after isolated injury of the anterior cruciate ligament. Am J Sports Med 1990;18:475–9.

    CAS  PubMed  Google Scholar 

  22. France PE, Daniels AU, Goble ME, et al. Simultaneous quantitation of knee ligament force. J. Biomech 1983;16:553–64.

    Article  CAS  PubMed  Google Scholar 

  23. Fujie H. Biomechanical measurement of in-situ forces in knee ligaments (in Japanese). Thesis, Kyoto University, 1994.

  24. Fujie H, Livesay GA, Fujita M, et al. Forces and moments in six-DOF at the human knee joint: Mathematical description for control. J Biomech (in press).

  25. Fujie H, Livesay GA, Kashiwaguchi S, et al. Determination of insitu force in the human anterior cruciate ligament: A new methodology. ASME Adv Bioeng BED-22 1992;22:91–4.

    Google Scholar 

  26. Fujie H, Livesay GA, Kashiwaguchi S, et al. A new methodology for direct, non-contact determination of in-situ forces in soft tissues. The Second North American Congress on Biomechanics, Chicago, 1992, 7–8.

  27. Fujie H, Livesay GA, Woo SL-Y, et al. The use of a universal force-moment sensor to determine in-situ forces in ligaments: A new methodology. J Biomech Eng 1995;117:1–7.

    CAS  PubMed  Google Scholar 

  28. Fukubayashi T, Torzilli PA, Sherman MF, et al. An in vitro biomechanical evaluation of anterior-posterio motion of the knee. J Bone Joint Surg 1982;64A:258–64.

    Google Scholar 

  29. Furman W, Marshall JL, Girgis FG. The anterior cruciate ligament: A functional analysis based on postmortem studies. J Bone Joint Surg 1976;58A:179–85.

    Google Scholar 

  30. Fuss FK. Anatomy and function of the cruciate ligaments of the domestic pig: A comparison with human cruciates. J Anat 1991;178:11–20.

    CAS  PubMed  Google Scholar 

  31. Fuss FK. Anatomy of the cruciate ligaments and their function in extension and flexion of the human knee joint. Am J Anat 1989;184:165–76.

    Article  CAS  PubMed  Google Scholar 

  32. Girgis FG, Marshall JL, Al Monajem ARS. The cruciate ligaments of the knee joint: Anatomical and experimental analysis. Clin Orthop 1975;106:216–31.

    PubMed  Google Scholar 

  33. Grood ES, Noyes FR, Butler DL, et al. Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knee. J Bone Joint Surg 1981;63A:1257–69.

    Google Scholar 

  34. Guan Y, Butler DL, Dormer SG, et al. Anterior cruciate subunit response during anterior drawer. ASME biomechanics Symposium 1991;Columbus, 201–204.

  35. Hey Groves E. Operation for the repair of the cruciate ligaments. Lancet 1917;II:674–5.

    Google Scholar 

  36. Hildebrand KA, Frank CB. The normal structure and function of the ligaments and their responses to injury and repair. In: Dee RM, Hurst LC, editors. Principle of orthopaedic practice. McGraw-Hill.

  37. Hollis MJ, Marcin JP, Horibe S, et al. Load determination in ACL fiber bundles under knee loading. Trans ORS 1988;13:58.

    Google Scholar 

  38. Hollis MJ, Takai S, Adams DJ, et al., The effects of knee motion and external loading on the length of the anterior cruciate ligament: A kinematic study. J Biomech Eng 1991;113:208–14.

    CAS  PubMed  Google Scholar 

  39. Insall JN, Hood RW. Bone-block transfer of the medial head of the gastrocnemius for posterior cruciate insufficiency. J Bone Joint Surg 1982;64A:691–9.

    Google Scholar 

  40. Ishibashi Y, Rudy TW, Livesay GA, et al. A robotic evaluation of the effect of ACL graft fixation site at the tibia on knee stability. J Arthroscopy (in press).

  41. Jackson DW, Grood ES, Goldstein JD et al. A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 1993;21:176–85.

    CAS  PubMed  Google Scholar 

  42. Jackson RW. Anterior cruciate ligament injuries. In: Casscells SW, editor. Arthroscopy: clinical and surgical practice. Philadelphia. Lea and Febiger, 1984:52–63.

    Google Scholar 

  43. Johnson LL. The outcome of a free autogenous semitendinosus tendon graft in human anterior cruciate reconstructive Sugery: A Histological study. Arthroscopy 1993;9:131–42.

    CAS  PubMed  Google Scholar 

  44. Johnson RJ, Beynnon BD, Nicholas CE, et al. Current concept review: the treatment of injuries to the anterior cruciate ligament. J Bone Joint Surg 1992;74A:140–51.

    Google Scholar 

  45. Jones KG. Reconstruction of the anterior cruciate ligament. J Bone Joint Surg 1963;45A:925–32.

    Google Scholar 

  46. Jones KG., Reconstruction of the anterior cruciate ligament using the central one-third of the patellar ligament. J Bone Joint Surg 1970;52A:838–9.

    Google Scholar 

  47. Kannus P, Jarvien M. Conservatively-treated tears of the anterior cruciate ligament: Long-term results. J Bone Joint Surg 1987;69A:1007–12.

    Google Scholar 

  48. Kapan MJ, Howe JG, Fleming B, et al. Anterior cruciate ligament reconstruction using patellar tendon graft. Part II. A specific sport review. Am J Sport Med 1991;19:458–62.

    Google Scholar 

  49. Kurosaka M, Yoshiya S, Andrish JT. A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med 1987;15: 225–9.

    CAS  PubMed  Google Scholar 

  50. Lewis JL, Fraser GA. On the use of buckle transducers to measure knee ligament forces. ASME Bromech Meeting AMD-32 1979;32:71–3.

    Google Scholar 

  51. Lewis JL, Lew WD, Hill JA, et al. Knee joint motion and ligamental forces before and after ACL reconstruction. J Biomech Eng 1989;111:97–106.

    CAS  PubMed  Google Scholar 

  52. Lewis JL, Poff B, Smith JJ, et al. In vivo forces in ACL grafts in the goat. ASME Adv Bioeng BED-24 1993;24:584–7.

    Google Scholar 

  53. Lipscomb ABJ, Woods GW, Jones A. A biomechanical evaluation of iliotibial tract screw tenodesis. Am J Sports Med 1992;20:742–5.

    PubMed  Google Scholar 

  54. Livesay GA, Fujie H, Kashiwaguchi S, et al. Determination of the in-situ forces and force distribution within the human anterior cruciate ligament. Ann Biomed Eng 1995;23:467–74.

    CAS  PubMed  Google Scholar 

  55. Livesay GA, Morrow DW, Sakane M, et al. Evaluation of the effect of joint constraints on the force distribution within the ACL. Trans ORS 1996;21:778.

    Google Scholar 

  56. Lyon RM, Akeson WH, Amiel D, et al.. Ultrastructural differences between the cells of the medial collateral and the anterior cruciate ligaments. Clin Orthop 1991;272:279–86.

    PubMed  Google Scholar 

  57. Markolf K, Bargar W, Shoemaker S, et al. The role of joint load in knee stability. J Bone Joint Surg 1981;63A:570–85.

    Google Scholar 

  58. Markolf KL, Gorek JF, Kabo JM, et al. Direct measurement of resultant forces in the anterior cruciate ligament. J Bone Joint Surg 1990;72A:557–67.

    Google Scholar 

  59. Markolf KL, Graff-Radford A, Amstutz HC. In-vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg 1978:60A664–74.

    Google Scholar 

  60. Markolf KL, Mensch JS, Amstutz HC. Stiffness and laxity of the knee—the contributions of the supporting structures. J Bone Joint Surg 1976;58A:583–93.

    Google Scholar 

  61. Markolf KL, Wascher DC, Finerman GAM. Direct in vitro measurement of forces in cruciate ligaments. Part II: The effect of section of the posterolateral structures. J Bone Joint Surg 1993;75A:387–94.

    Google Scholar 

  62. Marshall JL, Warren RF, Wickiewicz TL. The anterior cruciate ligament: A technique of repair and reconstruction. Clin Orthop 1979;143:97–106.

    PubMed  Google Scholar 

  63. McDaniel WJ Jr. Dameron TB Jr. The untreated anterior cruciate ligament rupture. Clin Orthop 1983;172:158–63.

    PubMed  Google Scholar 

  64. More RC, Markolf KL. Measurement of stability of the knee and ligament force after implantation of a synthetic anterior cruciate ligament graft. J Bone Joint Surg 1988;70A:1020–31.

    Google Scholar 

  65. Norwood LA, Cross MJ. Anterior cruciale ligament: Functional anatomy of its bundles in rotatory instabilities. Am J Sports Med 1979;7:23–6.

    CAS  PubMed  Google Scholar 

  66. Noyes F, Matthews D, Mooar P, et al. The symptomatic anterior cruciate-deficient knee: Part 1. The long-term functional disability in athletically active individuals. J Bone Joint Surg 1983;65A:154–62.

    Google Scholar 

  67. Noyes FR, Barber SD, Mangine RE. Bone-patellar ligamentbone and fascia lata allografts for reconstruction of the anterior cruciate ligament. J Bone Joint Surg 1990;72A:1125–36.

    Google Scholar 

  68. Noyes FR, Cummings JF, Grood ES, et al. The diagnosis of knee motion limits, subluxation, and ligament injury. Am J Sports Med 1991;19:163–71.

    CAS  PubMed  Google Scholar 

  69. O'Brien SJ, Warren RF, Pavlov H, et al. Reconstruction of the chronically insufficient anterior cruciate ligament with the central thid of the patellar ligament. J Bone Joint Surg 1991;73A: 278–86.

    Google Scholar 

  70. O'Brien SJ, Warren RF, Wickiewicz TL, et al. The iliotibial band lateral sling procedure and its effect on the results of anterior cruciate ligament reconstruction. Am J Sports Med 1991;19: 21–4.

    PubMed  Google Scholar 

  71. O'Donoghue DH, Rockwod CC, Repair of the anterior cruciate ligament in dogs. J Bone Joint Surg 1966;48A:503–19.

    Google Scholar 

  72. Odensten M, Gillquist J. Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. J Bone Joint Surg 1985;67A:257–61.

    Google Scholar 

  73. Ostgaard SE, Helmig P, Nielsen S, et al. Anterolateral instability in the anterior cruciate ligament-deficient knee: A cadaver study. Acta Orthop Scand 1991;62:4–8.

    CAS  PubMed  Google Scholar 

  74. Palmer I. On the injuries to the ligaments of the knee joint. Acta Chir Scand (Suppl) 1938;53:41–56.

    Google Scholar 

  75. Piziali RL, Rastager J, Nagel DA, et al.. The contributions of the cruciate ligaments to the load-displacement characterisitics of the human knee joint. J Biomech Eng 1980;102:277–83.

    CAS  PubMed  Google Scholar 

  76. Piziali RL, Seering WP, Nagel DA, et al. The function of the primary ligaments of the knee in anterior-posterior and mediallateral motions. J Biomech 1980;13:777–84.

    CAS  PubMed  Google Scholar 

  77. Praemer A, Furner S, Rice D. Musculoskeletal conditions in the United States. Rosemont: American Academy of Orthopaedic Surgeons, 1992.

    Google Scholar 

  78. Rosenberg TD. Technique for endoscopic method of ACL reconstruction. Acufex Microsurgical 1993;Technical Bulletin.

  79. Roth J, Kennedy J, Lockstadt H, et al. Polypropylene braid augmented and nonaugmented intraarticular anterior cruciate ligament reconstruction. Am J Sports Med 1985;13:321–36.

    CAS  PubMed  Google Scholar 

  80. Rudy TW, Livesay GA, Woo SL-Y, et al. A combined robotics/universal force sensor approach to determine in-situ forces of knee ligaments. J Biomech (in press).

  81. Sakane M, Fox RJ, Li G, et al. Forces in the AM and PL bundle of the ACL in response to anterior tibial loading of an intact knee (abstract). 2nd World Congress on Sports Trauma/AOSSM 22nd Annual Meeting, Lake Buena Vista. Florida, 1996.

  82. Sandberg R, Balkfors B. The durability of anterior cruciate ligament reconstruction with patellar tendon. Am J Sports Med 1988;16:341–3.

    CAS  PubMed  Google Scholar 

  83. Sandberg R, Balkfors B, Nilsson B, et al. Operative and nonoperative treatment of recent injuries to the ligaments of the knee: A prospective randomized study. J Bone Joint Surg 1987;69A:1120–6.

    Google Scholar 

  84. Sapega A, Moyar R, Schneck C. Testing for isometry during the reconstruction of the anterior cruciate ligament. J Bone Joint Surg 1990;72A:259–67.

    Google Scholar 

  85. Seering WP, Piziali RL, Nagel DA, et al. The function of the primary ligaments of the knee in varus-valgus and axial rotation. J Biomech 1980;13:785–94.

    Article  CAS  PubMed  Google Scholar 

  86. Seto JL, Orofino AS, Morrissey MC, et al. Assessment of quadriceps/hamstring strength, knee ligament stability, functional and sports activity levels 5 years after anterior cruciate ligament reconstruction. Am J Sports Med 1988;16:170–80.

    CAS  PubMed  Google Scholar 

  87. Sherman MF, Lieber L, Bonamo JR, et al. The long-term follow up of primary anterior cruciate ligament repair. AmJ Sports Med 1991;19:243–55.

    CAS  Google Scholar 

  88. Shino K, Kimura T, Hirose H, et al. Reconstruction of the anterior cruciate ligament by allogeneic tendon graft. J Bone Joint Surg 1986;68B:739–46.

    Google Scholar 

  89. Shoemaker SC, Markolf KL. Effects of joint load on the stiffness and laxity of ligament-deficient knees: An in vitro study of the anterior cruciate and medial collateral ligaments. J Bone Joint Surg 1985;67A:136–46.

    Google Scholar 

  90. Slocum S, Larson R. Pes anserius transplantation. A surgical procedure for control of rotatory instability of the knee. J Bone Joint Surg 1968;50A:226–42.

    Google Scholar 

  91. Takai S, Livesay GA, Woo SL-Y, et al. Determination of the insitu loads on the human anterior cruciate ligament. J Orthop Res 1993;11:686–95.

    Article  CAS  PubMed  Google Scholar 

  92. Tibone JE, Antich TJ, Perry J, et al. Functional analysis of untreated and reconstructed posterior cruciate ligament injuries. Am J Sports Med 1988;16:217–33.

    CAS  PubMed  Google Scholar 

  93. Vahey JW, Draganich LF. Tensions in the anterior and posterior cruciate ligaments of the knee during passive loading: Predicting the ligament loads from in-situ measurements. J Orthop Res 1991;9:529–38.

    Article  CAS  PubMed  Google Scholar 

  94. Xerogeanes JW, Takeda Y, Livesay GA, et al., Effect of knee flexion on the in situ force distribution in the human anterior cruciate ligament. Knee Surg, Sports Trauma, Arthroscopy 1995;3:9–13.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Sakane, M., Woo, S.L.Y., Hildebrand, K.A. et al. The contribution of the anterior cruciate ligament to knee joint kinematics: Evaluation of its in situ forces using a robot/universal force-moment sensor test system. J Orthop Sci 1, 335–347 (1996). https://doi.org/10.1007/BF02348844

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02348844

Key words

Navigation