Skip to main content
Log in

Computerised visualisation from images of blood flow through frog mesenteric microvessels with multiple complexities

  • Communication
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Blood flow through a frog mesenteric microvessel, consisting of one loop and two successive bends, was recorded by a video-microscopic system and analysed by a PC-based image processing system. After preprocessing, these images were analysed by the image velocimetry, axial tomography and image processing procedures. The blood flow in the microvessel had a Reynolds number of 0.033, and the Dean number varied from 0.004 in the loop to 0.007 in the bend, showing an increase in secondary flow in the bend region. These changes led to outward shifts in the peaks of velocity and concentration profiles, with an increase in the thickness of the outer walls (of about three times) compared with that of the inner walls. The mean velocity and mean cellular concentration showed a similar pattern. The variation in the cellular concentration in the microvessel was visualised by concentration contours and grey-scale images of the cellular distribution. At the inner wall of the complex geometry, the velocity reduced to zero, whereas the cellular concentration varied from 2 to 5%. In the high shear stress regions in the complex geometry, the vessel wall thickness was two-three times more than that in low shear stress regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal, J. K., andNandkumar, N. (1988): ‘On the computation of motion from sequence of images—A review’,Proc. IEEE,76, pp. 917–935

    Article  Google Scholar 

  • Baker, M., andWayland, H. (1974): ‘On-line volume flow rate and velocity profiles measurement for blood flow in microvessels’,Microvas. Res.,7, pp. 131–143

    Article  Google Scholar 

  • Berger, S. A., Talbot, L., andYacv, L. S. (1983): ‘Flow in curved pipes’,Ann. Rev. Fluid Mech.,15, pp. 461–512

    Article  Google Scholar 

  • Boesiger, P., Maier, S. E., Kecheng, L., Scheidegger, M. B., andMeier, D. (1992): ‘Visualization and quantification of the human blood flow by magnetic resonance imaging’,J. Biomech.,25, pp. 55–67

    Article  Google Scholar 

  • Carr, R. T., andWickham, L. L. (1991): ‘Influence of vessel diameter on red cell distribution at microvascular bifurcations’,Microvas. Res.,41, pp. 184–196

    Article  Google Scholar 

  • Cornelius, N. H., andKanade, T. (1983): ‘Adopting optical flow to measure object motion in reflectance and x-ray image sequences’, Proc. ACM SIGGRAPH/SIGART Workshop on Motion, Representation, and reception, Toronto, Canada, pp. 50–58

  • Douglas, M. A., andTrus, B. L. (1989): ‘An introduction to image processing in medical microscopy’,Med. Prog. Technol.,15, 109–140

    Google Scholar 

  • Gonzalez, R. C., andWoods, R. E. (1993): ‘Digital image processing’ (Addison-Wesley Publ., New York, 1993), pp. 191–195

    Google Scholar 

  • Hitt, D. L., andLowe, M. L. (1999): ‘Confocal imaging of flow in artificial venular bifurcations’,J. Biomech. Eng.,121, pp. 170–178

    Google Scholar 

  • Hoogstraten, H. W., Kootstra, J. G., Hillen, B., Krijger, J. K. B., andWensing, P. J. W. (1996): ‘Numerical simulation of blood flow in an artery with two successive bends’,J. Biomech.,29, pp. 1075–1083

    Article  Google Scholar 

  • Horn, B. K., andSchunck, B. G. (1981): ‘Determination of optical flow’,Artif. Intell.,17, pp. 185–203

    Article  Google Scholar 

  • Houle, S., andRoach, M. R. (1981): ‘Flow studies in a rigid model of an aorta-renal junction’,Atherosclerosis,40, pp. 231–244

    Article  Google Scholar 

  • Jain, A. K. (1989): ‘Fundamentals of digital image processing’ (Prentice Hall, New Jersey, 1989), pp. 342–430

    Google Scholar 

  • Kak, A. C. (1979): ‘Computerised tomography with X-ray emission and ultrasound sources’,Proc. IEEE,67, pp. 1345–1372

    Google Scholar 

  • Kak, A. C., andSlaney, M. (1987): ‘Principles of computed tomographic imaging’ (IEEE Press, New York, 1987), pp. 1345–1372

    Google Scholar 

  • Lie, M., Klineserener C., andTruskey, G. A. (1995): ‘Numerical investigation and prediction of atherogenic sites in branch arteries’,J. Biomech. Eng.,117, pp. 350–357

    Google Scholar 

  • Liepsch, D. (1986): ‘Flow in tubes and arteries—a comparison’,Biorheology,23, pp. 395–433

    Google Scholar 

  • Lipowski, H. H., Usami, S., andChien, S. (1980): ‘In vivo measurement of apparent viscosity and microvessel hematocrit in the mesentery of cat’,Microvas. Res.,19, pp. 297–319

    Google Scholar 

  • Lominadze, D., andMchedlishvili, G. (1999): ‘Red blood cell behavior at low flow rate in microvessels’,Microvas. Res.,58, pp. 187–189

    Article  Google Scholar 

  • Maarek, T. M., Tarry, G., Cosnac, B., de., Lansiart, A., andHung, B. M. (1984): ‘A simulation method for the study of laser transillumination of biological tissue’,Ann. Biomed. Eng.,12, pp. 281–303

    Google Scholar 

  • Moravec, S., andLiepsch, D. W. (1983): ‘Flow visualization in a model of a three dimensional human artery with Newtonian and non-Newtonian fluids’,Biorheology,20, pp. 745–759

    Google Scholar 

  • Nerem, R. M. (1992): ‘Vascular fluid mechanics, the arterial wall and atherosclerosis’,ASME J. Biomech. Eng.,114, pp. 274–282

    Google Scholar 

  • Prakash, B., andSingh, M. (1996): ‘Optimum kinetic energy dissipation in blood flow in glass capillaries by flow field determination: Analysis of curvature effect by axial tomography and image velocimetry techniques’,Biorheology,33, pp. 59–74

    Article  Google Scholar 

  • Pries, A. R., Ley, K., Claussen, M., andGaehtgens, P. (1989): ‘Red cell distribution at microvascular bifurcations’,Microvas. Res.,38, pp. 81–101

    Article  Google Scholar 

  • Pries, A. R., andGaehtgens, P. (1987): ‘Digital video image shearing devices for continuous microvascular diameter measurement’,Microvas. Res.,34, pp. 260–267

    Article  Google Scholar 

  • Pries, A. R., Secomb, T. W., Gaehtgens, P., andGross, J. F. (1990): ‘Blood flow in microvascular networks. Experiments and simulation’,Circulation Res.,67, pp. 826–834

    Google Scholar 

  • Rosenfeld, A., andKak, A. C. (1982): ‘Digital picture processing’ (Academic Press, New York, 1982)

    Google Scholar 

  • Sato, M., andOhshima, N. (1988): ‘Velocity profiles in microvessels measured by ten channel dual sensor method’,Biorheology,25, pp. 279–288

    Google Scholar 

  • Scarborough, J. B. (1966): ‘Numerical mathematical analysis’ (Oxford and IBH Publ. New Delhi, 1966)

    Google Scholar 

  • Schunck, B. G. (1984): ‘Motion segmentation and estimation by constraint line clustering’. Proceedings of Workshop on Computer vision. Annapolis, Maryland, pp. 58–62

  • Seki, J., andLipowski, H. H. (1989): ‘In vivo andin vitro measurement of red cell velocity under epifluorescence microscopy’,Microvas. Res.,38, pp. 110–124

    Article  Google Scholar 

  • Shibata, M., Kawamura, T., Sohirad, M., andKamiya, A. (1995): ‘A new fluorescence microscopy for tomographic observation of microcirculation by using dual-beam slit laser illumination’,Microvas. Res.,49, pp. 300–314

    Article  Google Scholar 

  • Singh, S. S., andSingh, M. (2002): ‘Detection of pulsatile blood flow cycle in microvessels by image velocimetry’,Med. Biol. Eng. Comput.,40, pp. 269–272

    Google Scholar 

  • Smith, R. W. (1987): ‘Computer processing of line images—A survey’,Pattern recognition,20, pp. 7–15

    Article  Google Scholar 

  • Stehbens, W. E. (1990): ‘The lipid hypothesis and the role of hemodynamics in atherosclerosis’,Prog. Cardiovas. Diseases,339, pp. 119–139

    Google Scholar 

  • Umrani, J., Prakash, B., andSingh, M. (1997): ‘Computerised multiparametric analysis from images of blood flow through frog mesenteric arterial bifurcation’,Med. Biol. Eng. Comput.,35, pp. 373–380

    Google Scholar 

  • Yan, Z. Y., Acrivos, A., andWeinbaum, S. (1991): ‘A Three-dimensional analysis of plasma skimming at microvascular bifurcations’,Microvas. Res.,42, pp. 17–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjunatha, M., Singh, M. Computerised visualisation from images of blood flow through frog mesenteric microvessels with multiple complexities. Med. Biol. Eng. Comput. 40, 634–640 (2002). https://doi.org/10.1007/BF02345301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345301

Keywords

Navigation