Skip to main content
Log in

Multi-frequency bioimpedance measurements of children in intensive care

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Bioimpedance spectroscopy is used to monitor the condition of the tissues of children staying in intensive care for the treatment of meningitis. The results are significant, with the angular frequency at maximum reactance lying between 1500 and 6400×103 rad s−1, whereas in a control group, this value does not exceed 900×103 rad s−1. The ratio between the specific conductance at zero and that at infinite frequency (this ratio is proportional to total body volume/volume of extracellular space) remains constant at 1.4 and equal to the ratio in the control group, despite infusions with physiological saline. The electrical parameters are associated with physiological ones and indicate that the membrane ‘capacitance’ decreases, as a result of the illness, from approximately 0.4 in the control group to 0.05 in the patient group. However, there is a time-delay between the onset of illness and the change in membrane capacitance. It is also found that the ratio between extracellular and intracellular specific conductivity in the group of patients and controls remains constant at approximately 4.3. The changes in the physiological and electrical parameters were compared with chemical parameters that were measured during the stay in intensive care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates, J. B., Chu, Y. T., andStribling, W. T. (1988) Surface topography and impedance of metal electrolyte interfaces.Phys. Rev. Lett.,70, pp. 627–630

    Google Scholar 

  • Cole, K. S., andCole, R. H. (1941): ‘Dispersion and absorption in dielectrics. I. Alternating current characteristics’,J. Chem. Phys.,9, pp. 341–351

    Google Scholar 

  • De Levie, R. (1989): ‘On the impedance of electrodes with rough interfaces’,J. Electroanal. Chem.,261, pp. 1–9

    Google Scholar 

  • Foster, K. R., andSchwan, H. P. (1989): ‘Dielectric properties of tissues and biological materials,’Crit. Rev. Biomed. Eng.,17, p. 25

    Google Scholar 

  • Hanai, T., Koizumi, M., andIrimajiri, A. (1975): ‘A method for determining the dielectric constant and the conductivity of membrane-bounded particles of biological membranes’,Biophys. Struct. Mech.,1, pp. 285–294

    Article  Google Scholar 

  • Hanai, T., andSekine, K. (1986): ‘Theory of dielectric relaxations due to the interfacial polarization for two-component suspensions of spheres’,Colloid Polymer Sci.,264, pp. 888–895

    Article  Google Scholar 

  • Irimajiri, A., Hanai, T., andInouye, A. (1975): ‘Dielectric properties of synaptosomes isolated from rat brain cortex’,Biophys. Struct. Mech.,1, pp. 273–283

    Article  Google Scholar 

  • Kaplan, T., andGray, L. J. (1985): ‘Effect of disorder on a fractal model for the AC response of a rough interface’,Phys. Rev. B.,32, (11), pp. 7360–7366

    Article  Google Scholar 

  • Liu, S. H. (1985): ‘Fractal model for the AC response of a rough interface’,Phys. Rev. Lett.,55, pp. 529–532

    Google Scholar 

  • McAdams, E. T., andJossinet, J. (1996): ‘Problems in equivalent circuit modelling of the electrical properties of biological tissues’,Bioelectrochem. Bioenergetics,40, pp. 147–152

    Article  Google Scholar 

  • Nyikos, L., andPajkossy, T. (1985): ‘Fractal dimension and fractal power frequency—dependent impedance of blocking electrodes’,Electrochimica Acta,30, pp. 1533–1540

    Article  Google Scholar 

  • Pajkossy, T., andNyikos, L. (1989a): ‘Diffusion to fractal surfaces. II. Verification of theory’,Electrochimica Acta,34, pp. 171–179

    Google Scholar 

  • Pajkossy, T., andNyikos, L. (1989b): ‘Diffusion to fractal surfaces. III. Linear sweep and cyclic voltammograms’,Electrochimica Acta,34 (2), pp. 181–186

    Google Scholar 

  • Pauly, H., andSchwan, H. P. (1959): ‘Über die Impedanz einer Suspension von kugelförmingen Teilchen mit einer Schale’,Z. für Naturforschung,Teil B 14, pp. 125–131

    Google Scholar 

  • Pauly, H., Pasker, L., andSchwan, H. P. (1960): ‘Electrical properties of mitochondrial membranes’,J. Biophys. Biochem. Cytol.,7, pp. 589–601

    Google Scholar 

  • Pauly, H. (1963): ‘Über die elektrische Kapazität der Zellmembranen und die Leitfähigkeit des Zytoplasmas von Ehrlich-Aszitestumorzellen’,Biophysik,1, pp. 143–153

    Article  Google Scholar 

  • Schneider, W. (1975): ‘Theory of frequency dispersion of electrode polarization. Topology of networks with fractional power frequency dependence’,J. Phys. Chem.,79, pp. 127–136

    Google Scholar 

  • Schwan, H. P. (1957): ‘Electrical properties of tissues and cell suspensions’ inLawrence, H. J., andTobias, C. A. (Eds): ‘Advances in biological and medicinal physics’, Vol. 5, pp. 148–209

  • Segal, K. R., Van Loan, M., Fitzgerald, P. I., andHodgdon, J. A. (1988): ‘Lean body mass estimation by bioelectrical impedance analysis. A four site cross validation study’,Am. J. Clin. Nutr.,47, pp. 7–14

    Google Scholar 

  • van Kreel, B. K., Cox-Reyven, N. L., andSoeters, P. (1998): ‘Determination of total body water by multi-frequency bio-electric impedance: development of several models’,Med. Biol. Eng. Comput.,36, pp. 337–345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. van Kreel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kreel, B.K. Multi-frequency bioimpedance measurements of children in intensive care. Med. Biol. Eng. Comput. 39, 551–557 (2001). https://doi.org/10.1007/BF02345145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345145

Keywords

Navigation