Skip to main content

Potential of Impedance Spectroscopy as a Manifold Non-invasive Method for Medical Applications

  • Chapter
  • First Online:
Advanced Systems for Biomedical Applications

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 39))

  • 582 Accesses

Abstract

Electrical Bioimpedance Spectroscopy (BIS) is an interesting method for assessing the state or composition of human organs and various types of biological tissues in-vivo in both clinical and research applications as well as in-vitro. The non-invasiveness of this method, its manifold applicability and adaptability make it suitable for usability as a part of health monitoring systems as portable, wearable or implantable systems. The foremost applications in personal health and biological tissues monitoring are fluid and body mass changes, tissue and cell characterization and dynamically variable biological systems assessment such as cardiac and lung function monitoring. In this contribution, we provide an overview of BIS and its applications for fluid monitoring and body cell mass changes in the second section, tissue characterization and cell growth monitoring in the third section and dynamically variable biological systems monitoring in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberg, P., Nicander, I., Hansson, J., Geladi, P., Holmgren, U., & Ollmar, S. (2004). Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE Transactions on Biomedical Engineering, 51(12), 2097–2102.

    Article  Google Scholar 

  • Aberg, P., Geladi, P., Nicander, I., Hansson, J., Holmgren, U., & Ollmar, S. (2005). Non-invasive and microinvasive electrical impedance spectra of skin cancer- a comparison between two techniques. Skin Research and Technology, 11(4), 281–286.

    Article  Google Scholar 

  • Addabbo, T., Fort, A., Mugnaini, M., Parri, L., Pinzi, M., Vignoli, V., et al. (2019). On the suitability of low-cost compact instrumentation for blood impedance measurements. IEEE Transactions on Instrumentation and Measurement, 68, 2412–2424.

    Google Scholar 

  • Aguiar FN: P. V. , et al. (2015). Overhydration prevalence in peritoneal dialysis - A 2-year longitudinal analysis. Nefrologia, 35, 189–196.

    Google Scholar 

  • Andersen, J. H., et al. (2019). Bioimpedance and NIR for non-invasive assessment of blood glucose. Journal of Electrical Bioimpedance, 10, 133–138.

    Google Scholar 

  • Andreoli, A., De Lorenzo, A., Cadeddu, F., Iacopino, L., & Grande, M. (2011). New trends in nutritional status assessment of cancer patients. European Journal of Medical and Pharmaceutical Science, 15, 469–480.

    CAS  Google Scholar 

  • Arroyo, D., et al. (2015). Intraperitoneal fluid overestimates hydration status assessment by bioimpedance spectroscopy. Peritoneal Dialysis International, 35, 85–89.

    Article  Google Scholar 

  • Atefi, S. R. (2007). Electrical bioimpedance cerebral monitoring: From hypothesis and simulation to first experimental evidence in stroke patients. Ph.D. Thesis, Royal Institute of Technology KTH, Stockholm, Sweden.

    Google Scholar 

  • Baek, S. H., et al. (2014). Control of fluid balance guided by body composition monitoring in patients on peritoneal dialysis (COMPASS): Study protocol for a randomized controlled trial. Trials, 15, 432.

    Article  Google Scholar 

  • Barbosa-Silva, M. C., & Barros, A. J. (2005). Bioelectrical impedance analysis in clinical practice: A new perspective on its use beyond body composition equations. Current Opinion in Clinical Nutrition and Metabolic Care, 8, 311–317.

    Article  Google Scholar 

  • Barsoukov, E., & Macdonald, J. R. (2005). Impedance spectroscopy: Theory, experiment, and applications (p. 2005). New York: Wiley.

    Book  Google Scholar 

  • Bartels, E. M., Sorensen, E. R., & Harrison, A. P. (2015). Multi-frequency bioimpedance in human muscle assessment. Physiological Reports.

    Google Scholar 

  • Bartels, E. M., Andersen, E. L., Olsen, J. K., Kristensen, L. E., Bliddal, H., Danneskiold-Samsoe, B., & Harrison, A. P. (2019). Muscle assessment using multi-frequency bioimpedance in a healthy Danish population aged 20–69 years: A powerful non-invasive tool in sports and in the clinic. Physiological Reports, 7(11), 14109.

    Article  Google Scholar 

  • Van Biesen, W., et al. (2011). Fluid status in peritoneal dialysis patients: The European Body Composition Monitoring (EuroBCM) study cohort. PLoS One, 6, 17148.

    Article  CAS  Google Scholar 

  • Bohli, N., Chammem, H., Meilhac, O., Mora, L., & Abdelghani, A. (2017). Electrochemical impedance spectroscopy on interdigitated gold microelectrodes for glycosylated human serum albumin characterization. IEEE Transactions on NanoBioscience, 16, 676–681.

    Article  Google Scholar 

  • Bouchaala, D., Guermazi, M., Kanoun, O., & Derbel, N. (2015). Portable device design for in-vitro muscle tissue monitoring. tm-Technisches Messen., 82(10), 485–494.

    Google Scholar 

  • Bragos, R., Riu, P. J., Warren, M., Tresilnchez, M., Carreiio, A., & Cinca, J. (1996). Changes in myocardial Impedance spectrum during acute ischemia in the in-situ pig heart. In IEEE EMBS conference, Amsterdam.

    Google Scholar 

  • Bronzino, J. D. (1999). Biomedical engineering handbook (Vol. 2). CRC Press.

    Google Scholar 

  • Casas, O., Bragos, R., Riu, P., Rosell, J., Tresilnchez, M., Warren, M., et al. (1999). In vivo and in situ ischemic tissue characterization using electrical impedance spectroscopy. Annals of the New York Academy of Sciences, 873, 51–58.

    Article  CAS  Google Scholar 

  • Chamney, P. W., Kramer, M., Rode, C., Kleinekofort, W., & Wizemann, V. A. (2002). New technique for establishing dry weight in hemodialysis patients via whole body bioimpedance. Kidney International, 61, 2250–2258.

    Article  Google Scholar 

  • Cheung, K., Gawad, S., & Renaud, P. (2005). Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation. Cytometry, 65A, 124–132.

    Article  CAS  Google Scholar 

  • Cheng, X., Liu, Y., Irimia, D., Demirci, U., Yang, L., Zamir, L., et al. (2007). Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab on a Chip, 7(6), 746–755.

    Article  CAS  Google Scholar 

  • Dai, T., & Adler, A. (2009). In vivo blood characterization from bioimpedance spectroscopy of blood pooling. IEEE Transactions on Instrumentation and Measurement, 58(11), 3831–3838.

    Article  Google Scholar 

  • Darling, C. E., Dovancescu, S., Saczynski, J. S., Riistama, J., Kuniyoshi, F. S., Rock, J., et al. (2017). Bioimpedance-based heart failure deterioration prediction using a prototype fluid accumulation vest-mobile phone dyad: An observational study. JMIR Cardio, 1(1).

    Google Scholar 

  • Davenport, A., et al. (2013). Can non-invasive measurements aid clinical assessment of volume in patients with cirrhosis? World Journal of Hepatology, 5, 433–438.

    Google Scholar 

  • Davison, S. N., Jhangri, G. S., Jindal, K., & Pannu, N. (2009). Comparison of volume overload with cycler-assisted versus continuous ambulatory peritoneal dialysis. Clinical Journal of the American Society of Nephrology, 4, 1044–1050.

    Article  CAS  Google Scholar 

  • Devolder, I., Verleysen, A., Vijt, D., Vanholder, R., & Van Biesen, W. (2010). Body composition, hydration, and related parameters in hemodialysis versus peritoneal dialysis patients. Peritoneal Dialysis International, 30, 208–214.

    Article  CAS  Google Scholar 

  • Dovancescu et al., S. (2014). Detection of electrocardiographic and respiratory signals from transthoracic bioimpedance spectroscopy measurements with a wearable monitor for improved home-based disease management in congestive heart failure. In IEEE computing in cardiology conference (CinC) (pp. 985–988).

    Google Scholar 

  • Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., & Wolf, B. (1997). Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosensors and Bioelectronics, 12(1), 29–41.

    Article  CAS  Google Scholar 

  • Fein, A., Grossman, R. F., Jones, J. G., Goodman, P., & Murray, J. (1979). Evaluation of transthoracic electrical impedance in the diagnosis of pulmonary edema. Circulation, 60(5), 1156–1160.

    Article  CAS  Google Scholar 

  • Freeborn, T., & Fu, B. (2018). Fatigue-induced cole electrical impedance model changes of biceps tissue bioimpedance. Fractal Fractional, 2, 27.

    Article  Google Scholar 

  • Fu, Y., & Guo, J. (2018). fBlood cholesterol monitoring with smartphone as miniaturized electrochemical analyzer or cardiovascular disease prevention. IEEE Transactions on Biomedical Circuits and Systems, 12(4), 784–790.

    Article  Google Scholar 

  • Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 41, 2251–2269.

    Article  CAS  Google Scholar 

  • Gersing, E., Kelleher, D. K., & Vaupel, P. (2003). Tumour tissue monitoring during photodynamic and hyperthermic treatment using bioimpedance spectroscopy. Physiological Measurement, 24, 625–637.

    Article  CAS  Google Scholar 

  • Gersing, E. (1998). Impedance spectroscopy on living tissue for determination of the state of organs. Bioelectrochemistry and Bioenergetics, 45, 145–149.

    Article  CAS  Google Scholar 

  • Giovinazzo, G., Ribas, N., Cinca, J., & Rosell-Ferrer, J. (2011). The feasibility of transoesophageal bioimpedance measurements for the detection of heart graft rejection. Physiological Measurement, 32, 867–876.

    Article  CAS  Google Scholar 

  • Gordon, R., Land, R., Min, M., Parve, T., & R. W. Salo (2005). A virtual system for simultaneous multi-frequency measurement of electrical bioimpedance. International Journal of Bioelectromagnetism, 7, 243–246.

    Google Scholar 

  • Grimnes, S., & Martinsen, O. G. (2000). Bioimpedance and bioelectricity basics (1st ed., p. 2000). Cambridge: Academic.

    Google Scholar 

  • Grimnes, S., & Martinsen, O. G. (2010). Alpha-dispersion in human tissue. Journal of Physics: Conference Series. IOP Publishing, 224, 012073.

    Google Scholar 

  • Grimnes, S., & Martinsen, O. G. (2014). Bioimpedance and bioelectricity basics. Cambridge: Academic.

    Google Scholar 

  • Guermazi, M. (2016). In-vitro biological tissue state monitoring based on impedance spectroscopy. Ph.D. Thesis, Chemnitz University of Technology (Vol. 3).

    Google Scholar 

  • Guermazi, M., Kanoun, O., & Derbel, N. (2014). Investigation of long time beef and veal meat behaviour by bioimpedance spectroscopy for meat monitoring. IEEE Sensors Journal, 14(10), 3624–3630.

    Article  Google Scholar 

  • Guo, J. (2017). Smartphone-powered electrochemical dongle for point-of care monitoring of blood SS-ketone. Analytical Chemistry, 89(17), 8609–8613.

    Article  CAS  Google Scholar 

  • Guo, J., & Ma, X. (2017). Simultaneous monitoring of glucose and uric acid on a single test strip with dual channels. Biosensors and Bioelectronics, 94, 415–419.

    Article  CAS  Google Scholar 

  • Guo, J. (2016). Uric acid monitoring with a smartphone as the electrochemical analyzer. Analytical Chemistry, 88(24), 11986–11989.

    Article  CAS  Google Scholar 

  • Gupta, D., Lis, C. G., Dahlk, S. L., King, J., Vashi, P. G., Grutsch, J. F., & Lammersfeld, C. A. (2008). The relationship between bioelectrical impedance phase angle and subjective global assessment in advanced colorectal cancer. Nutrition Journal, 7, 19.

    Article  Google Scholar 

  • Harrison, A. P., Elbrond, V. S., Riis-Olesen, K., & Bartels, E. M. (2015). Multifrequency bioimpedance in equine muscle assessment. Physiological Measurement, 36(3), 453–464.

    Article  Google Scholar 

  • Ivorra, A. (2003). Bioimpedance monitoring for physicians: An overview. Centre National de Microelectronica, Barcelona. Diploma thesis, Hospital Clínic de Barcelona.

    Google Scholar 

  • Jaeger, J. Q., & Mehta, R. L. (1999). Assessment of dry weight in hemodialysis: An overview. Journal of the American Society of Nephrology, 10, 392–403.

    Article  CAS  Google Scholar 

  • Jaffrin, M. Y. (2009). Body composition determination by bioimpedance: An update. Current Opinion in Clinical Nutrition and Metabolic Care, 12(5), 482–486.

    Article  Google Scholar 

  • Kalvoy, H., Martinsen, O. G., & Grimnes, S. (2008). Determination of tissue type surrounding a needle tip by electrical bioimpedance. In Conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society (pp. 2285– 2286).

    Google Scholar 

  • Koivumäki, T., Vauhkonen, M., Kuikka, J. T., & Hakulinen, M. A. (2012). Bioimpedance-based measurement method for simultaneous acquisition of respiratory and cardiac gating signals. Physiological Measurement, 33, 1323–1334.

    Article  Google Scholar 

  • Kuang, W., & Nelson, S. (1998). Low-frequency dielectric properties of biological tissues: A review with some new insights. Transactions of the ASAE, 41(1), 1998.

    Article  Google Scholar 

  • Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A., & Mattson, R. H. (1966). Development and evaluation of an impedance cardiac output system. Aerospace Medicine, 37, 1208–1212.

    CAS  Google Scholar 

  • Li, Y., Ma, R., Wang, X., Jin, J., Wang, H., Liu, Z., & Yin, T. (2019). Tissue coefficient of bioimpedance spectrometry as an index to discriminate different tissues in vivo. Biocybernetics and Biomedical Engineering, 39, 923–936.

    Article  Google Scholar 

  • Van Marken Lichtenbelt, W. D., Westerterp, K. R., Wouters, L., & Luijendijk, S. (1994). Validation of bioelectrical-impedance measurements as a method to estimate body-water compartments. The American Journal of Clinical Nutrition, 60(2), 159–166.

    Article  Google Scholar 

  • Lisdat, F., & Schäfer, D. (2008). The use of electrochemical impedance spectroscopy for biosensing. Analytical and Bioanalytical Chemistry, 391(5), 1555–1567.

    Article  CAS  Google Scholar 

  • Lingwood, B. E., Dunster, K. R., Healy, G. N., Ward, L. C., & Colditz, P. B. (2003). Cerebral impedance and neurological outcome following a mild or severe hypoxic/ischemic episode in neonatal piglets. Brain Research, 969(1), 160–167.

    Article  CAS  Google Scholar 

  • Luo, Y. J., Lu, X. H., Woods, F., & Wang, T. (2011). Volume control in peritoneal dialysis patients guided by bioimpedance spectroscopy assessment. Blood Purification, 31, 296–302.

    Article  Google Scholar 

  • Machek, P., Jirka, T., Moissl, U., Chamney, P., & Wabel, P. (2010). Guided optimization of fluid status in haemodialysis patients. Nephrology, Dialysis, Transplantation: Off. Publ. European Dialysis and Transplant Association - European Renal Association, 25, 538–544.

    Article  Google Scholar 

  • Mager, J. R., Sibley, S. D., Beckman, T. R., Kellogg, T. A., & Earthman, C. P. (2008). Multifrequency bioelectrical impedance analysis and bioimpedance spectroscopy for monitoring fluid and body cell mass changes after gastric bypass surgery. Clinical Nutrition, 27, 832–841.

    Article  Google Scholar 

  • Matthie, J. R. (2008). Bioimpedance measurements of human body composition: Critical analysis and outlook. Expert Review of Medical Devices, 5(2), 239–261.

    Article  Google Scholar 

  • Mellert, F., Winkler, K., Schneider, C., Dudykevych, T., Welz, A., Osypka, M., et al. (2010). Detection of (reversible) myocardial ischemic injury by means of electrical bioimpedance. IEEE Transactions on Biomedical Engineering, 58, 1511–1518.

    Article  Google Scholar 

  • Min, M., Kink, A., Land, R., Parve, T., & Rätsep, I. (2004). Modification of pulse wave signals in electrical bioimpedance analyzer for implantable medical devices. In Proceedings of the 26th IEEE International Conference on Engineering in Biology and Medicine (San Francisco) (pp. 2263–2266).

    Google Scholar 

  • Nescolarde, L., Yanguas, J., Medina, D., Rodas, G., & Rosell-Ferrer, J. (2011). Assessment and follow-up of muscle injuries in athletes by bioimpedance: preliminary results. In Conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society (pp. 1137–1140).

    Google Scholar 

  • Nescolarde, L., Yanguas, J., Lukaski, H., Alomar, X., Rosell-Ferrer, J., & Rodas, G. (2013). Localized bioimpedance to assess muscle injury. Physiological Measurement, 34(2), 237–245.

    Article  CAS  Google Scholar 

  • Nescolarde, L., Yanguas, J., Lukaski, H., Rodas, G., & Rosell-Ferrer, J. (2014). Localized BIA identifies structural and pathophysiological changes in soft tissue after post-traumatic injuries in soccer players. In Conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society (pp. 3743–3746).

    Google Scholar 

  • Nescolarde, L., Yanguas, J., Lukaski, H., Alomar, X., Rosell-Ferrer, J., & Rodas, G. (2015). Effects of muscle injury severity on localized bioimpedance measurements. Physiological Measurement, 36(1), 27–42.

    Article  CAS  Google Scholar 

  • Oh, K. H., et al. (2018). Does routine bioimpedance-guided fluid management provide additional benefit to non-anuric peritoneal dialysis patients? results from compass clinical trial. Peritoneal Dialysis International, 38, 131–138.

    Article  Google Scholar 

  • Onofriescu, M., et al. (2014). Bioimpedance-guided fluid management in maintenance hemodialysis: A pilot randomized controlled trial. American Journal of Kidney Disease, 64, 111–118.

    Article  Google Scholar 

  • Parmentier, S. P., et al. (2013). Influence of peritoneal dialysis solution on measurements of fluid status by bioimpedance spectroscopy. International Urology and Nephrology, 45, 229–232.

    Article  Google Scholar 

  • Passauer, J., Petrov, H., Schleser, A., Leicht, J., & Pucalka, K. (2010). Evaluation of clinical dry weight assessment in haemodialysis patients using bioimpedance spectroscopy: A cross-sectional study. Nephrology Dialysis Transplantation, 25, 545–551.

    Article  Google Scholar 

  • Pedro, B. G., Marcôndes, D. W. C., & Bertemes-Filho, P. (2020). Analytical model for blood glucose detection using electrical impedance spectroscopy. Sensors, 20(23), 6928.

    Article  CAS  Google Scholar 

  • Pliquett, U., Gersing, E., & Pliquett, F. (2000). Evaluation of time-domain based impedance measurements on biological tissue. Biomedical Technology, 45, 6–13.

    Article  CAS  Google Scholar 

  • Pradhan, R., Mitra, A., & Das, S. (2012). Impedimetric characterization of human blood using three-electrode based ECIS devices. Journal of Electrical Bioimpedance, 3, 12–19.

    Article  Google Scholar 

  • Salazar, Y., Bragos, R., Casas, O., Cinca, J., & Rosell, J. (2000). Transmural versus nontransmural in situ electrical impedance spectrum for healthy, ischemic, and healed myocardium. IEEE Transactions on Biomedical Engineering, 51, 1421–1427.

    Article  Google Scholar 

  • Salazar-Anguiano, J., Chávez-López, M. G., Zúñiga-García, V., Camacho, J., & Elías-Viñas, D. (2018). Resistive part of impedance as a possible indicator of hepatocellular carcinoma. Archives of Medical Research, 49, 89–93.

    Article  Google Scholar 

  • Sanchez, B., Vandersteen, G., Rosell-Ferrer, J., Cinca, J., & Bragos, R. (2011). In-cycle myocardium tissue electrical impedance monitoring using broadband impedance spectroscopy. In Annual international conference of the IEEE engineering in medicine and biology society (EMBC), 2011.

    Google Scholar 

  • Sanchez, B., Vandersteen, G., Martin, I., Castillo, D., Torrego, A., Riu, P. J., Schoukens, J., & Bragos, R. (2013). In vivo electrical bioimpedance characterization of human lung tissue during the bronchoscopy procedure. A feasibility study. Medical Engineering and Physics, 35(7), 949–957.

    Google Scholar 

  • Sarhill, N., Mahmoud, F. A., Christie, R., & Tahir, R. (2003). Assessment of nutritional status and fluid deficits in advanced cancer. American Journal of Hospice and Palliative Medicine, 20, 465–473.

    Article  Google Scholar 

  • Schwan, H. P. (1984). Electrical and acoustic properties of biological materials and biomedical applications. IEEE Transactions on Biomedical Engineering, 31(12), 872–878.

    Article  CAS  Google Scholar 

  • Schwan, H. P. (1957). Electrical properties of tissue and cell suspensions. Advances in Biological and Medical Physics, 5, 147–209.

    Article  CAS  Google Scholar 

  • Schwan, H. P. (1994). Electrical properties of tissues and cell suspensions: Mechanisms and models. In Proceedings of 16th annual international conference of the IEEE engineering in medicine and biology society (Vol. 1, pp. A70–A71).

    Google Scholar 

  • Seoane, F., Lindecrantz, K., Olsson, T., Kjellmer, I., Flisberg, A., & Bågenholm, R. (2005). Spectroscopy study of the dynamics of the transencephalic electrical impedance in the perinatal brain during hypoxia. Physiological Measurement, 26, 849.

    Article  Google Scholar 

  • Simini, F., & Bertemes-Filho, P. (2018). Bioimpedance in biomedical applications and research. Berlin: Springer.

    Book  Google Scholar 

  • Sipahi, S., et al. (2011). Body composition monitor measurement technique for the detection of volume status in peritoneal dialysis patients: The effect of abdominal fullness. International Urology and Nephrology, 43, 1195–1199.

    Article  Google Scholar 

  • Smith, D., Johnson, M., & Nagy, T. (2009). Precision and accuracy of bioimpedance spectroscopy for determination of in vivo body composition in rats. International Journal of Body Composition Research, 7, 21–26.

    Google Scholar 

  • Soley, A., Lecina, M., Gamez, X., Cairo, J., Riu, P., & Rosell, X., et al. (2005). Online monitoring of yeast cell growth by impedance spectroscopy. Journal of Biotechnology, 118(4), 398–405.

    Google Scholar 

  • Su, W. S., et al. (2011). The fluid study protocol: A randomized controlled study on the effects of bioimpedance analysis and vitamin D on left ventricular mass in peritoneal dialysis patients. Peritoneal Dialysis International: Journal of International Society of Peritoneal Dialysis, 31, 529–536.

    Article  CAS  Google Scholar 

  • Thibault, R., Cano, N., & Pichard, C. (2011). Quantification of lean tissue losses during cancer and HIV infection/AIDS. Current Opinion in Clinical Nutrition and Metabolic Care, 14(3), 261–267.

    Article  Google Scholar 

  • Tränkler, H. R., Kanoun, O., Min, M., & Rist, M. (2007). Smart sensor systems using impedance spectroscopy. Proceedings of the Estonian Academy of Science and Engineering, 13, 455–478.

    Google Scholar 

  • Warren, M., Bragos, R., Casas, O., Rodriguez-Sinovas, A., Rosell, J., Anivarro, I., & Cinca, J. (2000). Percutaneous electrocatheter technique for on-line detection of healed transmural myocardial infarction. Pacing and Clinical Electrophysiology, 23, 1283–1287.

    Article  CAS  Google Scholar 

  • Wieskotten, S., Heinke, S., Wabel, P., Moissl, U., Becker, J., Pirlich, M., et al. (2008). Bioimpedance-based identification of malnutrition using fuzzy logic. Physiological Measurement, 29, 639–654.

    Article  CAS  Google Scholar 

  • Wystrychowski, G., & Levin, N. W. (2007). Dry weight: Sine qua non of adequate dialysis. Advances in Chronic Kidney Disease, 14, 10–16.

    Article  Google Scholar 

  • Yilmaz, Z., et al. (2014). Evaluation of fluid status related parameters in hemodialysis and peritoneal dialysis patients: Clinical usefulness of bioimpedance analysis. Medicina, 50, 269–274.

    Article  Google Scholar 

  • Yu, C. M., Wang, L., et al. (2005). Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation, 112(6), 841–848.

    Article  Google Scholar 

  • Yufera, A., Rueda, A., Munoz, J. M., Doldan, R., Leger, G., & Rodriguez-Villegas, E. O. (2005). A tissue impedance measurement chip for myocardial ischemia detection. IEEE Transactions on Circuits System. I, Regular Papers, 52(12), 2620–2628.

    Google Scholar 

  • Zerahn, B., Jensen, B. V., Olsen, F., Petersen, J. R., & Kanstrup, I. L. (1999). The effect of thoracentesis on lung function and transthoracic electrical bioimpedance. Respiratory Medicine, 93(3), 196–201.

    Article  CAS  Google Scholar 

  • Zhu, F., Kuhlmann, M. K., Kotanko, P., Seibert, E., Leonard, E. F., & Levin, N. W. (2008). A method for the estimation of hydration state during hemodialysis using a calf bioimpedance technique. Physiological Measurement, 29, 503–516.

    Article  CAS  Google Scholar 

  • Zink, M. D., Weyer, S., Pauly, K., Napp, A., Dreher, M., Leonhardt, S., et al. (2015). Feasibility of bioelectrical impedance spectroscopy measurement before and after thoracentesis. BioMed Research International.

    Google Scholar 

  • Munjal, R., Wendler, F., & Kanoun, O. (2019). Embedded wideband measurement system for fast impedance spectroscopy using undersampling. IEEE Transactions on Instrumentation and Measurement, 69(6), 3461–3469.

    Article  Google Scholar 

  • Bouchaala, D., Kanoun, O., & Derbel, N. (2016). High accurate and wideband current excitation for bioimpedance health monitoring systems. Measurement, 79, 339–348.

    Article  Google Scholar 

  • Bouchaala, D., Kanoun, O., & Derbel, N. (2013). Portable bioimpedance spectrometer for total frequency range of \(\beta \)-dispersion. Technisches Messen, 80(11), 373–378.

    Article  Google Scholar 

  • Bouchaala, D., Guermazi, M., Derbel, N., & Kanoun, O. (2015). Portable device design for in-vitro muscle tissue monitoring. Technisches Messen, 82(10), 485–494.

    Article  Google Scholar 

  • Heidary Dastjerdi, M., Kanoun, O., & Himmel, J. (2016). Method to adjust gradiometer for medical applications. Technisches Messen, 83(5), 247–256.

    Google Scholar 

  • Guermazi, M., Kanoun, O., & Derbel, N. (2013). Reduction of anisotropy influence and contacting effects in in-vitro bioimpedance measurements. Journal of Physics: Conference Series, 434(012058).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhouha Bouchaala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouchaala, D., Nouri, H., Ben Atitallah, B., Derbel, N., Kanoun, O. (2021). Potential of Impedance Spectroscopy as a Manifold Non-invasive Method for Medical Applications. In: Kanoun, O., Derbel, N. (eds) Advanced Systems for Biomedical Applications. Smart Sensors, Measurement and Instrumentation, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-71221-1_1

Download citation

Publish with us

Policies and ethics