Skip to main content
Log in

Iterative optimal design of PET experiments for estimating β-adrenergic receptor concentration

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

To estimate in vivo myocardial β-adrenergic receptor concentration with sufficient precision and to reduce the experimental complexities in positron emission tomography (PET), an iterative optimal design method is applied. An initial three-injection protocol, utilising [F-18]-labelled (R)- and (S)-fluorocarazolol and unlabelled (S)-fluorocarazolol, is optimised for ligand dosages and administration times to maximise the precision of all model parameters using the D-optimal criterion. Using this experimental protocol, PET data are collected in porcine studies, and model parameters are estimated. All model parameters are identified with satisfactory precision. The in vivo myocardial β-receptor concentration is 7.5±0.6 pmol ml−1, which corresponds to the in vitro result of 10.1±1.3pmol ml−1. With more accurate parameter values, a simplified two-injection protocol is optimally designed, utilising only radiolabelled and unlabelled (S)-fluorocarazolol, based on a new criterion to maximise the precision of the β-receptor concentration. This revised optimum design predicts that the in vivo β-receptor concentration can be estimated with good precision but reduced experiment complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A i(t):

radioactivity concentration in blood MBq ml−1

B i(t):

molecular concentration of receptor-bound ligand duringith tracer injection, pmol ml−1

F i(t):

molecular concentration of ligand in its free phase in tissue duringith tracer injection, pmol ml−1

α:

fraction of vascular volume per unit volume of tissue, ml ml−1

k 1 :

rate constant of transport of ligand from plasma into its free phase in tissue, min−1

k 2 :

rate constant of ligand returning from free phase in tissue to plasma, min−1

k on :

association rate constant at which ligand binds to receptor, ml pmol−1 min−1

k off :

dissociation rate constant at which ligand dissociates from receptor, min−1

L i(t):

fraction of whole blood activity due to ligand in plasma, unitless

M j(t):

model-generated average radioactivity uptake over scan intervalj, MBqml−1

P i(t):

molecular concentration of ligand in blood, pmol ml−1

γ:

partial volume loss factor that accounts for under-estimation of radioactivity in small region due to scanner resolution effects, unitless

R :

haematocrit, fraction of blood cell volume to total blood volume, unitless

S i(t):

specific activity of radioactive ligand, MBq pmol−1

ε:

scatter fraction, fraction of radioactivity contributed from whole blood, unitless

θ:

model parameter vector

D LRi :

dose of labelled (R)-fluorocarazolol in injectioni, nmol

D LSi :

dose of labelled (S)-fluorocarazolol in injectioni, nmol

D URi :

dose of unlabelled (R)-fluorocarazolol in injectioni, nmol

D USi :

dose of unlabelled (S)-fluorocarazolol in injectioni, nmol

T i :

time of injectioni, min

References

  • Arango, V., Ernsberger, P., Marzuk, P. M., Chen, J. S., Tierney, H., Stanley, M., Reis, D. J., andMann, J. J. (1990): ‘Autoradiographic demonstration of increased serotonin 5-HT2 and beta-adrenergic receptor binding sites in the brain of suicide victims’,Arch. Gen. Psychiat.,47, pp. 1038–1047

    Google Scholar 

  • Aubert, I., Araujo, D. M., Cecyre, D., Robitaille, Y., Gauthier, S., andQuirion, R. (1992): ‘Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer's and Parkinson's diseases’,J. Neurochem.,58, pp. 529–541

    Google Scholar 

  • Bard, Y. (1974). ‘Nonlinear parameter estimation’ (Academic, New York)

    Google Scholar 

  • Brodde, O. E. (1991): ‘Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure (published erratum appears inPharmacol. Rev., 1991,43, p. 350),Pharmacol. Rev.,43, pp. 203–242

    Google Scholar 

  • Changeux, J. P. (1993): ‘Chemical signaling in the brain’,Sci. Am.,269, pp. 58–62

    Google Scholar 

  • Coleman, T., Branch, M., andGrace, A. (1999): ‘Optimization toolbox for use with Matlab, user's guide’ (The Mathworks, Inc., South Natick, MA)

    Google Scholar 

  • Delforge, J., Syrota, A., andMazoyer, B. M. (1989): ‘Experimental design optimisation: theory and application to estimation of receptor model parameters using dynamic positron emission tomography’,Phys. Med. Biol.,34, pp. 419–435

    Article  Google Scholar 

  • Delforge, J., Syrota, A., andMazoyer, B. M. (1990a): ‘Identifiability analysis and parameter identification of an in vivo ligand-receptor model from PET data’,IEEE Trans.,BME-37, pp. 653–661

    Google Scholar 

  • Delforge, J., Janier, M., Syrota, A., Crouzel, C., Vallois, J. M., Cayla, J., Lancon, J. P., andMazoyer, B. M. (1990b): ‘Noninvasive quantification of muscarinic receptors in vivo with positron emission tomography in the dog heart [see comments]’,Circulation,82, pp. 1494–1504

    Google Scholar 

  • Delforge, J., Syrota, A., Lancon, J. P., Nakajima, K., Loc'h, C., Janier, M., Vallois, J. M., Cayla, J., andCrouzel, C. (1991): ‘Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method (published erratum appears inJ. Nucl. Med., 1994,35, p. 921)’,J. Nucl. Med.,32, pp. 739–748

    Google Scholar 

  • Delforge, J., Le Guludec, D., Syrota, A., Bendriem, B., Crouzel, C., Slama, M., andMerlet, P. (1993): ‘Quantification of myocardial muscarinic receptors with PET in humans’,J. Nucl. Med.,34, pp. 981–991

    Google Scholar 

  • Elsinga, P. H., Vos, M. G., van Waarde, A., Braker, A. H., de Groot, T. J., Anthonio, R. L., Weemaes, A. A., Brodde, O. E., Visser, G. M., andVaalburg, W. (1996): ‘(S,S)- and (S,R)-1′-[18F]fluorocarazolol, ligands for the visualization of pulmonary beta-adrenergic receptors with PET’,Nucl. Med. Biol.,23, pp. 159–167

    Google Scholar 

  • Ernsberger, P., Iacovitti, L., andReis, D. J. (1990): ‘Astrocytes cultured from specific brain regions differ in their expression of adrenergic binding sites’,Brain Res.,517, pp. 202–208

    Article  Google Scholar 

  • Ernsberger, P., andNelson, D. O. (1988): ‘Refeeding hypertension in dietary obesity’,Am. J. Physiol.,254, pp. R47-R55

    Google Scholar 

  • Hindmarsh, A. C. (1983): ‘Odepack, a systematized collection of ODE solvers’ inStepleman, R. S. (Ed.): ‘Scientific computing’ (North-Holland, Amsterdam), pp. 55–65

    Google Scholar 

  • Huesman, R. H. (1984): ‘A new fast algorithm for the evaluation of regions of interest and statistical uncertainty in computed tomography’,Phys. Med. Biol.,29, pp. 543–552

    Article  Google Scholar 

  • Iyo, M., Yamasaki, T., Fukuda, H., Inoue, O., Suzuki, K., Shinotoh, H., Ito, T., Yonezawa, H., Nishio, M., andKoseki, A. (1989): ‘Age-related decrease of 11C-N-methylspiperone in vivo binding to human striatum detected by PET’,Kaku. Igaku.,26, pp. 213–220

    Google Scholar 

  • Mintun, M. A., Raichle, M. E., Kilbourn, M. R., Wooten, G. F., andWelch, M. J. (1984): ‘A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography’,Ann. Neurol.,15, pp. 217–227

    Article  Google Scholar 

  • Morris, E. D., Saidel, G. M., andChisolm, G. M. (1991): ‘Optimal design of experiments to estimate LDL transport parameters in arterial wall’,Am. J. Physiol.,261, pp. H929-H949

    Google Scholar 

  • Morris, E. D., Alpert, N. M., andFischman, A. J. (1996): ‘Comparison of two compartmental models for describing receptor ligand kinetics and receptor availability in multiple injection PET studies’,J. Cereb. Blood Flow Metab.,16, pp. 841–853

    Google Scholar 

  • Muzic, R. F. Jr, Chen, C. H., andNelson, A. D. (1998): ‘Method to account for scatter, spillover and partial volume effects in region of interest analysis in PET’,IEEE Trans. Med. Imag.,17, pp. 202–213

    Google Scholar 

  • Muzic, R. F. Jr, Nelson, A. D., andMiraldi, F. (1993): ‘Temporal alignment of tissue and arterial data and selection of integration start times for the H2 15O autoradiographic CBF model in PET’,IEEE Trans. Med. Imag.,12, pp. 393–398

    Google Scholar 

  • Muzic, R. F. Jr, Nelson, A. D., Saidel, G. M., andMiraldi, F. (1996): ‘Optimal experiment design for PET quantification of receptor concentration’,IEEE Trans. Med. Imag.,15, pp. 2–12

    Google Scholar 

  • Nelson, A. D., Muzic, R. F. Jr, Miraldi, F., Muswick, G. J., Leisure, G. P., andVoelker, W. (1990): ‘Continuous arterial positron monitor for quantitation in PET imaging’,Am. J. Physiol. Imaging,5, pp. 84–88

    Google Scholar 

  • Nordberg, A., Adem, A., Hardy, J., andWinblad, B. (1988): ‘Change in nicotinic receptor subtypes in temporal cortex of Alzheimer brains’,Neurosci. Lett.,86, pp. 317–321

    Article  Google Scholar 

  • Nordberg, A., Hartvig, P., Lilja, A., Viitanen, M., Amberla, K., Lundqvist, H., Anderson, Y., Langstrom, B., andWinblad B. (1991): ‘Brain nicotine receptor deficits in Alzheimer patients as studied by positron emission tomography technique’, inIqbal, K., andMcLachlan, D. R. C. (Eds) ‘Alzheimer's disease: basic mechanisms, diagnosis, and therapeutic strategies’ (Wiley, New York)

    Google Scholar 

  • Nordberg, A., andWinblad, B. (1986): ‘Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains’,Neurosci. Lett.,72, pp. 115–119

    Article  Google Scholar 

  • Strasser, R. H., Krimmer, J., andMarquetant, R. (1988): ‘Regulation of beta-adrenergic receptors: impaired desensitization in myocardial ischemia’,J. Cardiovasc. Pharmacol.,12, (Suppl 1: S15–24), pp. S15–S24

    Google Scholar 

  • Valette, H., Deleuze, P., Syrota, A., Delforge, J., Crouzel, C., Fuseau, C., andLoisance, D. (1995): ‘Canine myocardial beta-adrenergic, muscarinic receptor densities after denervation: a PET study (see comments)’,J. Nucl. Med.,36, pp. 140–146

    Google Scholar 

  • van Waarde, A., Visser, T. J., Posthumus, H., Elsinga, P. H., Anthonio, R. L., van Loenen-Weemaes, A. M., Visser, G. M., Beaufort-Krol, G. C., Paans, A. M., andVaalburg, W. (1996): ‘Quantification of the beta-adrenoceptor ligand ‘S-1’-[18F]fluorocarazolol in plasma of humans, rats and sheep’,J. Chromatogr. B. Biomed. Appl.,678, pp. 253–260

    Google Scholar 

  • Wienhard, K., Eriksson, L., Grootoonk, S., Casey, M., Pietrzyk, U., andHeiss, W. D. (1992): ‘Performance evaluation of the positron scanner ECAT EXACT’,J. Comput. Assist. Tomogr.,16, pp. 804–813

    Google Scholar 

  • Zheng, L., Berridge, M. S., andErnsberger, P. (1994): ‘Synthesis, binding properties, and18F labeling of fluorocarazolol, a high-affinity beta-adrenergic receptor antagonist’,J. Med. Chem.,37, pp. 3219–3230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Muzic Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muzic, R.F., Saidel, G.M., Zhu, N. et al. Iterative optimal design of PET experiments for estimating β-adrenergic receptor concentration. Med. Biol. Eng. Comput. 38, 593–602 (2000). https://doi.org/10.1007/BF02344863

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344863

Keywords

Navigation