Skip to main content
Log in

Recent advances in parametric neuroreceptor mapping with dynamic PET: basic concepts and graphical analyses

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Tracer kinetic modeling in dynamic positron emission tomography (PET) has been widely used to investigate the characteristic distribution patterns or dysfunctions of neuroreceptors in brain diseases. Its practical goal has progressed from regional data quantification to parametric mapping that produces images of kinetic-model parameters by fully exploiting the spatiotemporal information in dynamic PET data. Graphical analysis (GA) is a major parametric mapping technique that is independent on any compartmental model configuration, robust to noise, and computationally efficient. In this paper, we provide an overview of recent advances in the parametric mapping of neuroreceptor binding based on GA methods. The associated basic concepts in tracer kinetic modeling are presented, including commonly-used compartment models and major parameters of interest. Technical details of GA approaches for reversible and irreversible radioligands are described, considering both plasma input and reference tissue input models. Their statistical properties are discussed in view of parametric imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ichise M, Meyer JH, Yonekura Y. An introduction to PET and SPECT neuroreceptor quantification models. J Nucl Med 2001, 42: 755–763.

    PubMed  CAS  Google Scholar 

  2. Meyer JH, Ichise M. Modeling of receptor ligand data in PET and SPECT imaging: A review of major approaches. J Neuroimaging 2001, 11: 30–39.

    PubMed  CAS  Google Scholar 

  3. Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis-compartmental model. Ann Nucl Med 2006, 20: 583–588.

    PubMed  CAS  Google Scholar 

  4. Zaidi H, Shidahara M. Neuroreceptor imaging. In: Choi IY and Gruetter R (Eds.). Neural Metabolism In Vivo. New York, USA: Springer, 2012: 305–329.

    Google Scholar 

  5. Lee JS, Lee DS. Tracer kinetic analysis for PET and SPECT. Medical Imaging: Technology and Applications 2013.

    Google Scholar 

  6. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 1984, 15: 217–227.

    PubMed  CAS  Google Scholar 

  7. Carson RE. Tracer kinetic modeling in PET. In: Bailey DL, Townsend DW, Valk PE, Maisey MN (Eds). Positron Emission Tomography. London, Springer, 2005: 127–159.

    Google Scholar 

  8. Feng DD. Biomedical Information Technology. Academic Press, 2008.

    Google Scholar 

  9. Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. Elsevier Health Sciences, 2012.

    Google Scholar 

  10. Koeppe R, Holthoff V, Frey K, Kilbourn M, Kuhl D. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 1991, 11: 735–744.

    PubMed  CAS  Google Scholar 

  11. Kazumata K, Dhawan V, Chaly T, Antonini A, Margouleff C, Belakhlef A, et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J Nucl Med 1998, 39: 1521–1530.

    PubMed  CAS  Google Scholar 

  12. Chen M-K, Lee J-S, McGlothan JL, Furukawa E, Adams RJ, Alexander M, et al. Acute manganese administration alters dopamine transporter levels in the non-human primate striatum. Neurotoxicology 2006, 27: 229–236.

    PubMed  CAS  Google Scholar 

  13. Lim K, Kwon J, Jang I, Jeong J, Lee J, Kim H, et al. Modeling of brain D2 receptor occupancy-plasma concentration relationships with a novel antipsychotic, YKP1358, using serial PET scans in healthy volunteers. Clin Pharmacol Ther 2007, 81: 252–258.

    PubMed  CAS  Google Scholar 

  14. Weerts EM, Kim YK, Wand GS, Dannals RF, Lee JS, Frost JJ, et al. Differences in δ-and μ-opioid receptor blockade measured by positron emission tomography in naltrexone-treated recently abstinent alcohol-dependent subjects. Neuropsychopharmacology 2008, 33: 653–665.

    PubMed  CAS  Google Scholar 

  15. Kim JW, Lee JS, Kim SJ, Hoigebazar L, Shin KH, Yu KS, et al. Compartmental modeling and simplified quantification of [11C]sertraline distribution in human brain. Arch Pharm Res 2012, 35: 1591–1597.

    PubMed  CAS  Google Scholar 

  16. Lee JY, Seo SH, Kim YK, Yoo HB, Kim YE, Song IC, et al. Extrastriatal dopaminergic changes in Parkinson’s disease patients with impulse control disorders. J Neurol Neurosurg Psychiatry 2014, 85: 23–30.

    PubMed  CAS  Google Scholar 

  17. Carson RE. Tracer kinetic parametric imaging in PET. In: 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro. 2004: 611–615.

    Google Scholar 

  18. Lee JS, Lee DS, Ahn JY, Yeo JS, Cheon GJ, Kim S-K, et al. Generation of parametric image of regional myocardial blood flow using H2 15O dynamic PET and a linear least-squares method. J Nucl Med 2005, 46: 1687–1695.

    PubMed  Google Scholar 

  19. Cselényi Z, Olsson H, Halldin C, Gulyás B, Farde L. A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands [11C]FLB 457 and [11C]WAY 100635. Neuroimage 2006, 32: 1690–1708.

    PubMed  Google Scholar 

  20. Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics 2013, 3: 802–815.

    PubMed  PubMed Central  Google Scholar 

  21. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 1997, 6: 279–287.

    PubMed  CAS  Google Scholar 

  22. Kim SJ, Lee JS, Kim YK, Frost J, Wand G, McCaul ME, et al. Multiple linear analysis methods for the quantification of irreversibly binding radiotracers. J Cereb Blood Flow Metab 2008, 28: 1965–1977.

    PubMed  CAS  Google Scholar 

  23. Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Transactions on Nuclear Science 2002, 49: 104–110.

    Google Scholar 

  24. Zhou Y, Huang SC, Bergsneider M, Wong DF. Improved parametric image generation using spatial-temporal analysis of dynamic PET studies. Neuroimage 2002, 15: 697–707.

    PubMed  Google Scholar 

  25. Alpert NM, Yuan F. A general method of Bayesian estimation for parametric imaging of the brain. Neuroimage 2009, 45: 1183–1189.

    PubMed  Google Scholar 

  26. Dean Fang Y-H, El Fakhri G, Becker JA, Alpert NM. Parametric imaging with Bayesian priors: A validation study with 11C-Altropane PET. Neuroimage 2012, 61: 131–138.

    Google Scholar 

  27. Kamasak M. Effects of spatial regularization on kinetic parameter estimation for dynamic PET. Biomed Signal Process Control 2014, 9: 6–13.

    Google Scholar 

  28. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007, 27: 1533–1539.

    PubMed  CAS  Google Scholar 

  29. Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab 2001, 21: 635–652.

    PubMed  CAS  Google Scholar 

  30. Morris ED, Endres CJ, Schmidt KC, Christian BT, Muzic RFJ, Fisher RE. Kinetic modeling in positron emission tomography. In: Wernick MN, Aarsvold JN. Emission Tomography: The Fundamentals of PET and SPECT. Elsevier, 2004: 499–540.

    Google Scholar 

  31. Bentourkia Mh, Zaidi H. Tracer kinetic modeling in PET. PET Clinics 2007, 2: 267–277.

    Google Scholar 

  32. Huang S-C, Barrio JR, Phelps ME. Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J Cereb Blood Flow Metab 1986, 6: 515–521.

    PubMed  CAS  Google Scholar 

  33. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996, 4: 153–158.

    PubMed  CAS  Google Scholar 

  34. Phelps M, Huang S, Hoffman E, Selin C, Sokoloff L, Kuhl D. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979, 6: 371–388.

    PubMed  CAS  Google Scholar 

  35. Huang S-C, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 1980, 238: E69–E82.

    PubMed  CAS  Google Scholar 

  36. Ogden RT. Estimation of kinetic parameters in graphical analysis of PET imaging data. Stat Med 2003, 22: 3557–3568.

    PubMed  Google Scholar 

  37. Wu YG. Noninvasive quantification of local cerebral metabolic rate of glucose for clinical application using positron emission tomography and 18F-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 2008, 28: 242–250.

    PubMed  CAS  Google Scholar 

  38. Zheng X, Wen L, Yu SJ, Huang SC, Feng DD. A study of non-invasive Patlak quantification for whole-body dynamic FDG-PET studies of mice. Biomed Signal Process Control 2012, 7: 438–446.

    PubMed  PubMed Central  Google Scholar 

  39. Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an imagederived input function. J Cereb Blood Flow Metab 1998, 18: 716–723.

    PubMed  CAS  Google Scholar 

  40. Kim SJ, Lee JS, Im KC, Kim SY, Park SA, Lee SJ, et al. Kinetic modeling of 3′-deoxy-3′-18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 2008, 49: 2057–2066.

    PubMed  Google Scholar 

  41. Kim JH, Kim YH, Kim YJ, Yang BY, Jeong JM, Youn H, et al. Quantitative positron emission tomography imaging of angiogenesis in rats with forelimb ischemia using 68Ga-NOTA-c(RGDyK). Angiogenesis 2013, 16: 837–846.

    PubMed  CAS  Google Scholar 

  42. Feng D, Huang SC, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput 1993, 32: 95–110.

    PubMed  CAS  Google Scholar 

  43. Phillips RL, Chen CY, Wong DF, London ED. An improved method to calculate cerebral metabolic rates of glucose using PET. J Nucl Med 1995, 36: 1668–1679.

    PubMed  CAS  Google Scholar 

  44. Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, et al. Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 1993, 188: 131–136.

    PubMed  CAS  Google Scholar 

  45. Cunningham VJ, Hume SP, Price GR, Ahier RG, Cremer JE, Jones A. Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro. J Cereb Blood Flow Metab 1991, 11: 1–9.

    PubMed  CAS  Google Scholar 

  46. Hume SP, Myers R, Bloomfield PM, Opacka-Juffry J, Cremer JE, Ahier RG, et al. Quantitation of Carbon-11-labeled raclopride in rat striatum using positron emission tomography. Synapse 1992, 12: 47–54.

    PubMed  CAS  Google Scholar 

  47. Lammertsma A, Bench C, Hume S, Osman S, Gunn K, Brooks D, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 1996, 16: 42–52.

    PubMed  CAS  Google Scholar 

  48. Watabe H, Carson R, Iida H. The reference tissue model: Three compartments for the reference region. Neuroimage 2000, 11: S12.

    Google Scholar 

  49. Feng D, Wong KP, Wu CM, Siu WC. A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements: Theory and simulation study. IEEE Trans Inf Technol Biomed 1997, 1: 243–254.

    PubMed  CAS  Google Scholar 

  50. Watabe H, Channing MA, Riddell C, Jousse F, Libutti SK, Carrasquillo JA, et al. Noninvasive estimation of the aorta input function for measurement of tumor blood flow with [15O] water. IEEE Trans Med Imaging 2001, 20: 164–174.

    PubMed  CAS  Google Scholar 

  51. Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, et al. Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med 1995, 36: 1714–1722.

    PubMed  CAS  Google Scholar 

  52. Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim SK, Yeo JS, et al. Blind separation of cardiac components and extraction of input function from H2 15O dynamic myocardial PET using independent component analysis. J Nucl Med 2001, 42: 938–943.

    PubMed  CAS  Google Scholar 

  53. Ahn JY, Lee DS, Lee JS, Kim SK, Cheon GJ, Yeo JS, et al. Quantification of regional myocardial blood flow using dynamic H2 15O PET and factor analysis. J Nucl Med 2001, 42: 782–787.

    PubMed  CAS  Google Scholar 

  54. Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng 2005, 52: 201–210.

    PubMed  Google Scholar 

  55. Parker BJ, Feng DD. Graph-based Mumford-Shah segmentation of dynamic PET with application to input function estimation. IEEE Trans Nucl Sci 2005, 52: 79–89.

    Google Scholar 

  56. Zanderigo F, Ogden RT, Parsey RV. Reference region approaches in PET: a comparative study on multiple radioligands. J Cereb Blood Flow Metab 2013, 33: 888–897.

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996, 16: 834–840.

    PubMed  CAS  Google Scholar 

  58. Wong DF, Wagner HN, Dannals RF, Links JM, Frost JJ, Ravert HT, et al. Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 1984, 226: 1393–1396.

    PubMed  CAS  Google Scholar 

  59. Beck JV, Arnold KJ. Parameter Estimation in Engineering and Science. New York: John Wiley & Sons, 1977.

    Google Scholar 

  60. Gjedde A. High- and low-affinity transport of D-glucose from blood to brain. J Neurochem 1981, 36: 1463–1471.

    PubMed  CAS  Google Scholar 

  61. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multipletime uptake data. J Cereb Blood Flow Metab 1983, 3: 1–7.

    PubMed  CAS  Google Scholar 

  62. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985, 5: 584–590.

    CAS  Google Scholar 

  63. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990, 10: 740–747.

    PubMed  CAS  Google Scholar 

  64. Yokoi T, Iida H, Itoh H, Kanno I. A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET. J Nucl Med 1993, 34: 498–505.

    PubMed  CAS  Google Scholar 

  65. Ito H, Yokoi T, Ikoma Y, Shidahara M, Seki C, Naganawa M, et al. A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies. Neuroimage 2010, 49: 578–586.

    PubMed  Google Scholar 

  66. Zhou Y, Ye W, Brašić JR, Crabb AH, Hilton J, Wong DF. A consistent and efficient graphical analysis method to improve the quantification of reversible tracer binding in radioligand receptor dynamic PET studies. Neuroimage 2009, 44: 661–670.

    PubMed  PubMed Central  Google Scholar 

  67. Zhou Y, Ye W, Brašić JR, Wong DF. Multi-graphical analysis of dynamic PET. Neuroimage 2010, 49: 2947–2957.

    PubMed  PubMed Central  Google Scholar 

  68. Logan J. A review of graphical methods for tracer studies and strategies to reduce bias. Nucl Med Biol 2003, 30: 833–844.

    PubMed  Google Scholar 

  69. Logan J, Alexoff D, Fowler JS. The use of alternative forms of graphical analysis to balance bias and precision in PET images. J Cereb Blood Flow Metab 2011, 31: 535–546.

    PubMed  PubMed Central  Google Scholar 

  70. Schmidt KC, Turkheimer FE. Kinetic modeling in positron emission tomography. quarterly J Nucl Med 2002, 46: 70–85.

    CAS  Google Scholar 

  71. Ichise M, Ballinger JR, Golan H, Vines D, Luong A, Tsai S, et al. Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF SPECT. J Nucl Med 1996, 37: 513–520.

    PubMed  CAS  Google Scholar 

  72. Carson RE. PET parameter estimation using linear integration methods: Bias and variability considerations. In: Uemura K, Lassen NA, Jones Y, Kanno I (Eds). Quantification of Brain Function: Tracer Kinetics and Image Analysis in Brain PET. Amsterdam: Elsevier Science Publishers, 1993.

    Google Scholar 

  73. Abi-Dargham A, Martinez D, Mawlawi O, Simpson N, Hwang DR, Slifstein M, et al. Measurement of striatal and extrastriatal dopamine D1 receptor binding potential With [11C] NNC 112 in humans: validation and reproducibility. J Cereb Blood Flow Metab 2000, 20: 225–243.

    PubMed  CAS  Google Scholar 

  74. Slifstein M, Laruelle M. Effects of statistical noise on graphic analysis of PET neuroreceptor studies. J Nucl Med 2000, 41: 2083–2088.

    PubMed  CAS  Google Scholar 

  75. Kimura Y, Naganawa M, Shidahara M, Ikoma Y, Watabe H. PET kinetic analysis—Pitfalls and a solution for the Logan plot. Ann Nucl Med 2007, 21: 1–8.

    PubMed  Google Scholar 

  76. Logan J, Fowler JS, Volkow ND, Ding YS, Wang GJ, Alexoff DL. A strategy for removing the bias in the graphical analysis method. J Cereb Blood Flow Metab 2001, 21: 307–320.

    PubMed  CAS  Google Scholar 

  77. Logan J, Fowler JS, Ding YS, Franceschi D, Wang GJ, Volkow ND, et al. Strategy for the formation of parametric images under conditions of low injected radioactivity applied to PET studies with the irreversible monoamine oxidase A tracers [11C]Clorgyline and Deuterium-substituted [11C] Clorgyline. J Cereb Blood Flow Metab 2002, 22: 1367–1376.

    PubMed  CAS  Google Scholar 

  78. Varga J, Szabo Z. Modified regression model for the Logan plot. J Cereb Blood Flow Metab 2002, 22: 240–244.

    PubMed  PubMed Central  Google Scholar 

  79. Joshi A, Fessler JA, Koeppe RA. Improving PET receptor binding estimates from Logan plots using principal component analysis. J Cereb Blood Flow Metab 2008, 28: 852–865.

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Cselényi Z, Olsson H, Farde L, Gulyás B. Wavelet-aided parametric mapping of cerebral dopamine D2 receptors using the high affinity PET radioligand [11C]FLB 457. Neuroimage 2002, 17: 47–60.

    PubMed  Google Scholar 

  81. Shidahara M, Seki C, Naganawa M, Sakata M, Ishikawa M, Ito H, et al. Improvement of likelihood estimation in Logan graphical analysis using maximum a posteriori for neuroreceptor PET imaging. Ann Nucl Med 2009, 23: 163–171.

    PubMed  Google Scholar 

  82. Feng D, Huang SC, Wang Z, Ho D. An unbiased parametric imaging algorithm for nonuniformly sampled biomedical system parameter estimation. IEEE Trans Med Imaging 1996, 15: 512–518.

    PubMed  CAS  Google Scholar 

  83. Kimura Y, Hsu H, Toyama H, Senda M, Alpert NM. Improved signal-to-noise ratio in parametric images by cluster analysis. Neuroimage 1999, 9: 554–561.

    PubMed  CAS  Google Scholar 

  84. Van Huffel S, Vandewalle J. The total least squares problem: computational aspects and analysis. Frontiers Appl Math SIAM, Philadelphia, 1991.

    Google Scholar 

  85. Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 2002, 22: 1271–1281.

    PubMed  Google Scholar 

  86. Parsey RV, Ogden RT, Mann JJ. Determination of volume of distribution using likelihood estimation in graphical analysis: elimination of estimation bias. J Cereb Blood Flow Metab 2003, 23: 1471–1478.

    PubMed  Google Scholar 

  87. Young PC. An instrumental variable method for real-time identification of a noisy process. Automatica 1970, 6: 271–287.

    Google Scholar 

  88. Stoica P, Soderstrom T. Optimal instrumental variable estimation and approximate implementations. IEEE Trans Automat Contr 1983, 28: 757–772.

    Google Scholar 

  89. Stock JH, Watson MW. Introduction to Econometrics. Addison Wesley, 2003.

    Google Scholar 

  90. Van Huffel S, Vandewalle J. Comparison of total least squares and instrumental variable methods for parameter estimation of transfer function models. Int J Contr 1989, 50: 1039–1056.

    Google Scholar 

  91. Minchin P. Analysis of tracer profiles with applications to phloem transport. J Exp Bot 1978, 29: 1441–1450.

    CAS  Google Scholar 

  92. Brooks D, Salmon E, Mathias C, Quinn N, Leenders K, Bannister R, et al. The relationship between locomotor disability, autonomic dysfunction, and the integrity of the striatal dopaminergic system in patients with multiple system atrophy, pure autonomic failure, and Parkinson’s disease, studied with PET. Brain 1990, 113: 1539–1552.

    PubMed  Google Scholar 

  93. Howes OD, Montgomery AJ, Asselin M, Murray RM, Grasby PM, McGUIRE PK. Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br J Psychiatry 2007, 191: s13–s18.

    Google Scholar 

  94. Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P, et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 2009, 66: 13–20.

    PubMed  Google Scholar 

  95. Kumakura Y, Cumming P. PET studies of cerebral levodopa metabolism: a review of clinical findings and modeling approaches. Neuroscientist 2009, 15: 635–650.

    PubMed  CAS  Google Scholar 

  96. Ikoma Y, Takano A, Varrone A, Halldin C. Graphic plot analysis for estimating binding potential of translocator protein (TSPO) in positron emission tomography studies with [18F]FEDAA1106. Neuroimage 2013, 69: 78–86.

    PubMed  CAS  Google Scholar 

  97. Heiss WD, Herholz K. Brain receptor imaging. J Nucl Med 2006, 47: 302–312.

    PubMed  CAS  Google Scholar 

  98. Woo S, Kim S, Zhou J, Kim E, Seo JM, Park J, et al. Imaging of activated cortical areas after light and electrical stimulation of the rabbit retina: F-18 FDG PET-guided brain mapping. Biomed Eng Lett 2012, 2: 111–117.

    Google Scholar 

  99. Jin S, Oh M, Oh S, Oh J, Lee S, Chung S, et al. Differential diagnosis of Parkinsonism using dual-phase F-18 FP-CIT PET imaging. Nucl Med Mol Imaging 2013, 47: 44–51.

    PubMed  PubMed Central  Google Scholar 

  100. Park E, Hwang Y, Lee CN, Kim S, Oh S, Kim Y, et al. Differential diagnosis of patients with inconclusive Parkinsonian features using [18F]FP-CIT PET/CT. Nucl Med Mol Imaging 2014, 48: 106–113.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Lee SH, Park H. Parametric response mapping of longitudinal PET scans and their use in detecting changes in Alzheimer’s diseases. Biomed Eng Lett 2014, 4: 73–79.

    Google Scholar 

  102. Brust P, Hoff J, Steinbach J. Development of 18F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci Bull 2014. Doi: 10.1007/s12264-014-1460-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, S., Kim, S.J., Lee, D.S. et al. Recent advances in parametric neuroreceptor mapping with dynamic PET: basic concepts and graphical analyses. Neurosci. Bull. 30, 733–754 (2014). https://doi.org/10.1007/s12264-014-1465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1465-9

Keywords

Navigation