Skip to main content
Log in

Preservation of phosphagen kinase function during transient hypoxia via enzyme abundance or resistance to oxidative inactivation

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Mammalian lactate dehydrogenase and phosphofructokinase are more susceptible in vitro to superoxide\((O_2^{\dot - } )\) and hydroxyl (·OH) radicals than pyruvate kinase and glucose-6-phosphate dehydrogenase, suggesting that differential inactivation of regulatory enzymes contributes to the metabolic disintegration in stenoxic tissues during transient hypoxia. Like-wise, creatine kinase in smooth muscle from porcine ileum is significantly reduced by hypoxia-reoxygenation ex vivo from 300 (±18.2 SE,n=8) to 196 U·g wet wt-1 (±16.7,P0.001, ANOVA). Conversely, arginine kinase, from the myocardium ofLimulus polyphemus, a species that tolerates anoxia for days was 2.9-fold less susceptible to oxidative inactivation. To examine whether preservation of kinase function is related to euryoxic capacity, a combination of non-invasive31P-NMR spectroscopy and enzyme-linked assays was used to follow ATP and phosphagen status during hypoxia-reoxygenation in porcine ileum smooth muscle,L. polyphemus myocardium, and the myocardium ofArgopecten irradians, a scallop species tolerant of hypoxia for only 24 h. Despite wide differences in phylogeny, euryoxic capacity and oxidative vulnerability of the phosphagen kinases, in all three tissues, the phosphagen pool recovered concomitant with ATP during reoxygenation, thereby revealing competent kinase function. In the mammalian tissue, such preservation of kinase function is facilitated by a 2400-fold excess of enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AK :

arginine kinase

CK :

creatine kinase

DTE :

dithioerythritol

EDTA :

ethylenediaminetetra-acetic acid

EGTA :

ethyleneglycol-bis (β-aminoethylether)N,N′-tetra-acetic acid

G-6-PDH :

glucose-6-phosphate dehydrogenase

LDH :

lactate dehydrogenase

MOPS :

[3-morpholino]propanesulfonate

NBT :

nitroblue tetrazolium

NMR :

nuclear magnetic resonance

PCr :

phosphocreatine

PFK :

phosphofructokinase

Pi :

inoganic phosphate

PK :

pyruvate kinase

PME :

phosphomonoester

ppm :

parts per million

SW :

sea water

XOD :

bovine buttermilk xanthine oxidase

References

  • Ambrosio G, Zweier JL, Jacobus WE, Weisfeldt ML, Flaherty JT (1987) Improvement of postischemic myocardial function and metabolism induced by administration of desferoxamine at the time of reflow: the role of iron in the pathogenesis of reperfusion injury. Circulation 76: 906–915

    CAS  PubMed  Google Scholar 

  • Bolling SF, Bies LE, Bove EL, Gallagher KP (1990) Augmenting intracellular adenosine improves myocardial recovery. J Thorac Cardiovasc Surg 99: 469–474

    CAS  PubMed  Google Scholar 

  • Bücher T, Pfleiderer G (1955) Pyruvate kinase from muscle. In: Colowick SP, Kaplan NP (eds) Methods in enzymology. Academic Press, New York, pp 435–440

    Google Scholar 

  • Bulkley GB (1983) The role of oxygen free radicals in human disease processes. Surgery 94: 407–411

    CAS  PubMed  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants of aqueous electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solutions. J Phys Chem Res Data 17: 513–886

    CAS  Google Scholar 

  • Clark ET, Gewertz BL (1992) Limiting oxygen delivery attenuates intestinal reperfusion injury. J Surg Res 53: 485–489

    Article  CAS  PubMed  Google Scholar 

  • Clottes E, Couthon F, Denoroy L, Vial C (1994) Creatine kinase compactness and thiol accessibility during sodium dodecyl sulfate denaturation estimated by resonance energy transfer and 2-nitro-5-thiocyanobenzoic acid cleavage. Biochim Biophys Acta 14: 171–176

    Google Scholar 

  • DeFur PL, Mangum CP (1979) The effects of environmental variables on the heart rates of invertebrates. Comp Biochem Physiol 62A: 283–294

    Google Scholar 

  • Dykens, JA, Rogers J (1991) Creatinine and arginine kinase are selectively inactivated by superoxide radical exposure: implications for reoxygenation injury. Bull Mt Desert Isl Biol Lab 30: 16

    Google Scholar 

  • Dykens JA, Shick JM (1988) Relevance of purine catabolism to hypoxia and recovery in euryoxic and stenoxic marine invertebrates, particularly bivalve molluscs. Comp Biochem Physiol 91C: 35–41

    CAS  Google Scholar 

  • Dykens JA, Takayama MM, Wakai RH (1988) Purine catabolism and oxidative defenses inMytilus edulis andPlacopecten magellanicus: a model for mammalian reperfusion injury. Bull Mt Desert Isl Biol Lab 27: 101–102

    Google Scholar 

  • Dykens JA, Joseph A, Deel S, Freiburger H (1991) Cyanide insensitive molluscan respiration and mitochondrial free radical production. Bull Mt Desert Isl Biol Lab 30: 102–103

    Google Scholar 

  • Ellington RW (1983) Phosphorus nuclear magnetic resonance studies of energy metabolism in molluscan tissues: effect of anoxia and ischemia on the intracellular pH and high energy phosphates in the ventricle of the whelk,Busycon contrarium. J Comp Physiol 153: 159–166

    CAS  Google Scholar 

  • Ellington RW (1989) The recovery from anaerobic metabolism in invertebrates. J Exp Zool 228: 431–444

    Google Scholar 

  • Falkowski PG (1974) Facultative anaerobiosis inLimulus polyphemus: phosphoenolpyruvate carboxykinase and heart activities. Comp Biochem Physiol 49B: 749–759

    Google Scholar 

  • Fridovich I (1985) Xanthine oxidase. In: Greenwald RA (ed)CRC handbook of methods for oxygen radical research, CRC Press, Boca Raton, pp 51–53

    Google Scholar 

  • Fucci I, Oliver CN, Coon MJ, Stadtman ER (1983) Inactivation of key metabolic enzymes by mixed-function oxidation reaction: possible implication in protein turnover and aging. Proc Natl Acad Sci USA 80: 1521–1525

    CAS  PubMed  Google Scholar 

  • Furter R, Furter-Graves EM, Wallimann T (1993) Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry 32: 7022–7029

    Article  CAS  PubMed  Google Scholar 

  • Gäde G (1983) Energy metabolism of arthropods and mollusks during environmental and functional anaerobiosis. J Exp Zool 228: 415–429

    Article  Google Scholar 

  • Granger DN, Parks DA (1983) Role of oxygen radicals in the pathogenesis of intestinal ischemia. Physiologist 26: 159–164

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, Clarendon Press, Oxford

    Google Scholar 

  • Hochachka PW (1980) Living without oxygen. Harvard Univ Press, Cambridge, Mass

    Google Scholar 

  • Ishida Y, Paul RJ (1989) Evidence for compartmentation of high energy phosphagens in smooth muscle. Prog Clin Biol Res 315: 417–428

    CAS  PubMed  Google Scholar 

  • Ishida Y, Paul RJ (1990) Effects of hypoxia on high-energy phosphagen content, energy metabolism and isometric force in guinea-pig taenia caeci. J Physiol (Lond) 424: 41–56

    CAS  Google Scholar 

  • Kushmerick MJ (1983) Energetics of muscle contraction. In: Peachey LD, Adrian RH (eds) Handbook of physiology. Am Physiol Society, Bethesda, MD, USA, pp 189–236

    Google Scholar 

  • Lin L, Perryman MB, Friedman D, Roberts R, Ma TS (1994) Determination of the catalytic site of creatine kinase by sitedirected mutagenesis. Biochim Biophys Acta 1206: 97–104

    CAS  PubMed  Google Scholar 

  • Ling KH, Paetkau V, Marcus F, Lardy HA (1966) Phosphofructokinase. In: Wood EA (ed) Methods in enzymology, vol IX. Academic Press, New York, pp 425–429

    Google Scholar 

  • McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312: 159–163

    CAS  PubMed  Google Scholar 

  • McCord JM, Russell WJ (1988) In: Cerutti PA, Fridovich I, McCord JM (eds) Oxy-radicals in molecular biology and pathology. Alan Liss, New York, pp 27–35

    Google Scholar 

  • Parks DA, Granger DN (1986) Role of oxygen radicals in gastrointestinal ischemia, In: Rotilio G (ed) Superoxide and superoxide dismutase in chemistry, biology and medicine, Elsevier, Amsterdam, pp 614–617

    Google Scholar 

  • Parks DA, Bulkey GB, Granger DN (1983) Role of oxygen-derived free radicals in digestive tract diseases. Surgery 94: 415–422

    CAS  PubMed  Google Scholar 

  • Parks DA, Williams TK, Beckman JS (1987) Xanthine dehydrogenase to oxidase conversion in ischemic small intestine. Fed Proc 46: 1124

    Google Scholar 

  • Sharma MK, Buettner GR, Spencer KT, Kerber RE (1994) Ascorbyl free radical as a real-time marker of free radical generation in briefly ischemic and reperfused hearts: an electron paramagnetic resonance study. Cire Res 74: 650–658

    CAS  Google Scholar 

  • Sheikh S, Katiyar SS (1993) Chemical modification of octopine dehydrogenase by thiol specific reagents: evidence for the presence of an essential cysteine at the catalytic site. Biochim Biophys Acta 1202: 251–257

    CAS  PubMed  Google Scholar 

  • Shick JM, Widdows J, Gnaiger E (1988) Calorimetric studies of behavior, metabolism and energetics of sessile intertidal animals. Am Zool 28: 161–181

    Google Scholar 

  • Stadtman ER, Oliver CN, Levine RL, Fucci L, Rivett AJ (1987) Implication of protein oxidation in turnover, aging and oxygen toxicity. In: Simic MG et al (eds) Oxygen radicals in biology and medicine. Plenum Press, New York, pp 331–339

    Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257: 1220–1224

    CAS  PubMed  Google Scholar 

  • Suzuki YJ, Edmondson JD, Ford GD (1992) Inactivation of rabbit muscle creatine kinase by hydrogen peroxide. Free Rad Res Comm 16: 131–136

    CAS  Google Scholar 

  • Theede H, Ponat A, Hiroki K, Schlieper C (1969) Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulfide. Mar Biol 2: 325–337

    CAS  Google Scholar 

  • Tyler DD (1975) Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem J 147: 493–504

    CAS  PubMed  Google Scholar 

  • Wiseman RW, Ellington WR, Rosanske RC (1989) Effects of extracellular pH andd-lactate efflux on regulation of intracellular pH during isotonic contractions in a molluscan muscle: a31P-nuclear magnetic resonance study. J Exp Zool 252: 228–236

    Article  CAS  Google Scholar 

  • Wiseman RW, Ellington WR (1989) Intracellular buffering capacity in molluscan muscle: superfused muscle versus homogenates. Physiol Zool 62: 541–558

    CAS  Google Scholar 

  • Worthington CC (1988) Worthington manual. Worthington Biochemical Co., Freehold, New Jersey

    Google Scholar 

  • Wrogemann K, Stephens NL (1977) Oxidative phosphorylation in smooth muscle. In: Stephens NL (ed) The biochemistry of smooth muscle, University Park Press, Baltimore, MD

    Google Scholar 

  • Yuan G, Kaneko M, Masuda H, Hon RB, Kobayashi A, Yamazaki N (1992) Decrease in heart mitochondrial creatine kinase activity due to oxygen free radicals. Biochim Biophys Acta 1140: 78–84

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L.C.-H. Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dykens, J.A., Wiseman, R.W. & Hardin, C.D. Preservation of phosphagen kinase function during transient hypoxia via enzyme abundance or resistance to oxidative inactivation. J Comp Physiol B 166, 359–368 (1996). https://doi.org/10.1007/BF02336918

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02336918

Key words

Navigation