Skip to main content
Log in

Analysis of heating a three-dimensional porous bed utilizing the two energy equation model

Berechnung der Aufheizung eines dreidimensionalen porösen Bettes unter Verwendung eines auf zwei Energiegleichungen basierenden Modells

  • Originals
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper heating a three-dimensional porous packed bed by a non-thermal equilibrium flow of incompressible fluid is analytically investigated. A two energy equation model is employed to simulate the temperature difference between the fluid and solid phases. Using the perturbation technique, an analytical solution for the problem is obtained. It is shown that the temperature difference between the fluid and solid phases forms a wave localized in space and propagating from the fluid inlet boundary in the direction of the flow. The amplitude of the wave decreases while the wave propagates downstream.

Zusammenfassung

In der Arbeit wird die Aufheizung eines dreidimensionalen porösen Bettes über eine nichtthermische Gleichgewichtsströmung eines inkompressiblen Fluids analytisch untersucht, und zwar mit Hilfe eines Modells, das auf zwei Energiegleichungen fußt und die Temperaturdifferenz zwischen flüssiger und fester Phase zu simulieren gestattet. Unter Einsatz der Störungsrechnung läßt sich eine analytische Lösung des Problems finden. Es wird gezeigt, daß die Temperaturdifferenz zwischen Flüssigkeit und Festphase räumlich lokalisierte Wellen bildet, die sich vom Ort des Fluideintritts in Strömungsrichtung ausbreiten. Die Amplitude der Wellen nimmt während deren stromabwärts erfolgender Ausbreitung ab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a sf :

specific surface area common to solid and fluid phases (m2/m3)

c p :

specific heat at constant pressure (J kg−1K−1)

d :

particle diameter (m)

h w :

heat transfer coefficient at the porous bed walls (W m−2K−1)

h sf :

fluid-to-particle heat transfer coefficient between solid and fluid phases (W m−2K−1)

L i :

length of the packed bed (inx i -direction, m)

Nu fs :

fluid-to-solid Nusselt number (=h sf d/λ f )

Pr :

Prandtl number (=μ(c p ) f /λ f )

R i :

dimensionless length of the packed bed (inx i -direction)

Re p :

particle Reynolds number (=<ρ f >f vd/μ)

t :

time (s)

T :

temperature (K)

T in :

inlet temperature of the fluid phase (K)

T 0 :

initial temperature of the packed bed (K)

u :

dimensionless temperature (=1−Θ)

ν :

velocity of the fluid phase (m s−1)

x 1,x 2,x 3 :

Cartesian coordinates (m)

α :

dimensionless heat transfer coefficient at the porous bed walls

β :

constant

δ :

dimensionless small parameter

ɛ :

porosity

λ :

thermal conductivity (W m−1K−1)

μ :

absolute viscosity of the fluid (kg m−1s−1)

Θ:

dimensionless temperature

ΔΘ:

dimensionless difference between temperatures of the fluid and solid phases

ρ :

density (kg m−3)

τ :

dimensionless time

ξ i :

dimensionless coordinates

eff:

effective property

feff:

effective property for fluid

in:

inlet

f :

fluid

0:

initial

s :

solid

seff:

effective property for solid

\(\langle \Phi \rangle = \frac{1}{V}\mathop \smallint \limits_{V_\Psi } \Phi dV\) :

local volume average of a quantity Φ

\(\langle \Phi \rangle ^\Psi = \frac{1}{{V_\Psi }}\mathop \smallint \limits_{V_\Psi } \Phi dV\) :

intrinsic local volume average of a quantity Φ associated with phase Ψ

References

  1. Vafai, K.;Sözen, M.: Analysis of energy and momentum transport for fluid flow through a porous bed. ASME J. Heat Transfer 112 (1990) 690–699

    Google Scholar 

  2. Vafai, K.;Sözen, M.: An investigation of a latent heat storage porous bed and condensing flow through it. ASME J. Heat Transfer 112 (1990) 1014–1022

    Google Scholar 

  3. Sözen, M.;Vafai, K.: Analysis of the non-thermal equilibrium condensing flow of a gas through a packed bed. Int. J. Heat Mass Transfer 33 (1990) 1247–1261

    Google Scholar 

  4. Amiri, A.;Vafai, K.: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transfer 37 (1994) 939–954

    Article  Google Scholar 

  5. Schumann, T.E.W.: Heat transfer: liquid flowing through a porous prizm. J. Franklin Institute 208 (1929) 405–416

    Article  MATH  Google Scholar 

  6. Arpaci, V.S.;Clark, J.A.: Dynamic response of fluid and wall temperatures during pressurized discharge for simultaneous time-dependent inlet gas temperature, ambient temperature, and/or ambient heat flux. Adv. Cryogenic Eng. 7 (1962) 419–432

    Google Scholar 

  7. Hung, F.T.; Nevins, R.G.: Unsteady-state heat transfer with a flowing fluid through porous solids. ASME paper No. 65-HT-10 (1965)

  8. Jang, W.J.; Lee, C.P.: Dynamic response of solar heat storage systems. ASME Paper No. 74-WA/HT-22 (1974)

  9. Burch, D.M.;Allen, R.W.;Peavy, B.A.: Transient temperature distributions within porous slabs subjected to sudden transpiration heating. ASME J Heat Transfer 98 (1976) 221–225

    Google Scholar 

  10. Riaz, M.: Analytical solutions for single- and two-phase models of packed-bed thermal storage systems. ASME J. Heat Transfer 99 (1977) 489–492

    Google Scholar 

  11. Kuznetsov, A.V.: An investigation of a wave of temperature difference between solid and fluid phases in a porous packed bed. Int. J. Heat Mass Transfer 37 (1994) 3030–3033

    Article  MATH  Google Scholar 

  12. Dixon, A.G.;Cresswell, D.L.: Theoretical predictions of effective heat transfer parameters in packed beds. AIChE J. 25 (1979) 663–676

    Article  Google Scholar 

  13. Handley, D.;Heggs, P.J.: Momentum and heat transfer mechanisms in regular shaped packings. Trans. Inst. Chem. Eng. 46 (1968) T251-T264

    Google Scholar 

  14. Miyauchi, H.;Kataoka, H.;Kikuchi, T.: Gas film coefficients of mass transfer in low peclet number region for sphere packed beds. Chem. Eng. Sci. 31 (1976) 9–13

    Google Scholar 

  15. Wakao, N.;Tanaka, K.;Nagai, H.: Measurement of particle-togas mass transfer coefficients from chromatographic adsorption experiments. Chem. Eng. Sci. 31 (1976) 1109–1113

    Google Scholar 

  16. Dullien, F.A.L.: Porous Media Fluid Transport and Pore Structure, Chap. 3. New York: Academic Press 1979

    Google Scholar 

  17. Carslaw, H.S.;Jaeger, J.C.: Conduction of Heat in Solids. Oxford: Oxford University Press 1959

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The results presented in this paper were obtained while the author was a Research Fellow of the AvHumboldt Foundation (Germany) at Ruhr-University Bochum. The support of the Christian Doppler Laboratory for Continuous Solidification Processes is also appreciated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A.V. Analysis of heating a three-dimensional porous bed utilizing the two energy equation model. Heat and Mass Transfer 31, 173–177 (1996). https://doi.org/10.1007/BF02333316

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02333316

Keywords

Navigation