Skip to main content
Log in

Arrangement of MP26 in lens junctional membranes: Analysis with proteases and antibodies

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The major membrane protein of the bovine lens fiber cell is a 26-kilodalton (kD) protein (MP26), which appears to be a component of the extensive junctional specializations found in these cells. To examine the arrangement of MP26 within the junctional membranes, various proteases were incubated with fiber cell membranes that had been isolated with or without urea and/or detergents. These membranes were analyzed with electron microscopy and SDS-PAGE to determine whether the junctional specializations or the proteins were altered by proteolysis. Microscopy revealed no obvious structural changes. Electrophoresis showed that chymotrypsin, papain, and trypsin degraded MP26 to 21–22 kD species. A variety of protease treatments, including overnight digestions, failed to generate additional proteolysis. Regions on MP26 which were sensitive to these three proteases overlapped. Smaller peptides were cleaved from MP26 with V8 protease and carboxypptidases A and B. Protein domains cleaved by these proteases also overlapped with regions sensitive to chymotrypsin, papain, and trypsin. Specific inhibition of the carboxypeptidases suggested that cleavage obtained with these preparations was not likely due to contaminating endoproteases. Since antibodies are not thought to readily penetrate the 2–3 nm extracellular gap in the fiber cell junctions, antibodies to MP26 were used to analyze the location of the protease-sensitive domains. Antisera were applied to control (26 kD) and proteolyzed (22 kD) membranes, with binding being evaluated by means of ELISA reactions on intact membranes. Antibody labeling was also done following SDS-PAGE and transfer to derivatized paper. Both assays showed a significant decrease in binding following proteolysis, with the 22 kD product showing no reaction with the anti-MP26 sera. These investigations suggest that MP26 is arranged with approximately fourfifths of the primary sequence “protected” by the lipid bilayer and the narrow extracellular gap. One-fifth of the molecule, including the C-terminus, appears to be exposed on the cytoplasmic side of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcala, J., Maisel, H. 1978. Specific antiserum to the main intrinsic polypeptide of chick lens fiber cell plasma membranes.Exp. Eye Res. 26:219–221

    Article  CAS  PubMed  Google Scholar 

  • Benedetti, E.L., Dunia, I., Bentzel, C.J., Vermorken, A.J.M., Kibbelaar, M., Bloemendal, H. 1976. A portrait of plasma membrane specializations in eye lens epithelium and fibers.Biochim. Biophys. Acta 457:353–384

    CAS  PubMed  Google Scholar 

  • Benedetti, E.L., Dunia, I., Bloemendal, H. 1974. Development of junctions during differentiation of lens fibers.Proc. Natl. Acad. Sci USA 71:5073–5077

    CAS  PubMed  Google Scholar 

  • Bloemendal, H. 1981. Molecular and Cellular Biology of the Eye Lens. Wiley-Interscience, New York

    Google Scholar 

  • Bloemendal, H., Hermsen, T., Dunia, I., Benedetti, E.L. 1982. Association of crystallins with the plasma membrane.Exp. Eye Res. 35:61–67

    CAS  PubMed  Google Scholar 

  • Bloemendal, H., Vermorken, A.J.M., Kibbelaar, M., Dunia, I., Benedetti, E.L. 1977. Nomenclature for the polypeptide chains of lens plasma membranes.Exp. Eye Res. 24:413–415

    CAS  PubMed  Google Scholar 

  • Bok, D., Dockstader, J., Horwitz, J. 1982. Immunocytochemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions.J. Cell Biol. 92:213–220

    Article  CAS  PubMed  Google Scholar 

  • Broekhuyse, R.M., Kuhlmann, E.D. 1974. Lens membranes. I. Composition of urea-treated plasma membranes from calf lens.Exp. Eye Res. 19:297–302

    CAS  PubMed  Google Scholar 

  • Broekhuyse, R.M., Kuhlmann, E.D. 1978. Lens membranes. IV. Preparative isolation and characterization of membranes and various membrane proteins from calf lens.Exp. Eye Res. 26:305–320

    CAS  PubMed  Google Scholar 

  • Broekhuyse, R.M., Kuhlmann, E.D. 1980. Lens membranes. XI. Some properties of human lens main intrinsic protein (MIP) and its enzymatic conversion into a 22,000 dalton polypeptide.Exp. Eye Res. 30:305–310

    Article  CAS  PubMed  Google Scholar 

  • Broekhuyse, R.M., Kuhlmann, E.D., Winkens, H.J. 1979. Lens membranes. VII. MIP is an immunologically specific component of lens fiber membranes and is identical with 26K band protein.Exp. Eye Res. 29:303–313

    Article  CAS  PubMed  Google Scholar 

  • Byers, L.D., Wolfenden, R. 1972. A potent reversible inhibitor of carboxypeptidase A.J. Biol. Chem. 247:606–608

    CAS  PubMed  Google Scholar 

  • Drapeau, G.R. 1976. Protease fromStaphylococcus aureus.In: Methods in Enzymology. L. Lorand, editor. Vol. 45, pp. 469–475. Academic Press, New York

    Google Scholar 

  • Engvall, E. 1980. Enzyme immunoassay ELISA and EMIT.Methods Enzymol. 70:419–439

    CAS  PubMed  Google Scholar 

  • Engvall, E., Perlman, P. 1972. Enzym-linked immunosorbent assay, ELISA. III. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes.J. Immunol. 109:129–135

    CAS  PubMed  Google Scholar 

  • Fairbanks, G., Steck, T.L., Wallach, D.F.H. 1971. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane.Biochemistry 10:2606–2617

    Article  CAS  PubMed  Google Scholar 

  • Finbow, M., Yancey, S.B., Johnson, R., Revel, J.P. 1980. Independent lines of evidence suggesting a major gap junctional protein with a molecular weight of 26,000.Proc. Natl. Acad. Sci. USA 77:970–974

    CAS  PubMed  Google Scholar 

  • Folk, J.E. 1971. Carboxypeptidase B.In: The Enzymes. P. Boyer, editor. Vol. 3, pp. 57–79. Academic Press, New York

    Google Scholar 

  • Friedlander, M. 1980. Immunological approaches to the study of myogenesis and lens fiber junctions formation.Curr. Top. Dev. Biol. 14:321–358

    CAS  PubMed  Google Scholar 

  • Goodenough, D.A. 1979. Lens gap junctions: A structural hypothesis for nonregulated low-resistance intercellular pathways.Invest. Ophthalmol. Vis. Sci. 18:1104–1122

    CAS  PubMed  Google Scholar 

  • Goodenough, D.A., Dick, J.S.B., II, Lyons, J.E. 1980. Lens metabolic cooperation: A study of mouse lens transport and permeability visualized with freeze substitution autoradiography and electron microscopy.J. Cell Biol. 86:576–589

    Article  CAS  PubMed  Google Scholar 

  • Henderson, D., Eibl, H., Weber, K. 1979. Structure and biochemistry of mouse hepatic gap junctions.J. Molec. Biol. 132:193–218

    Article  CAS  PubMed  Google Scholar 

  • Hertzberg, E.L. 1980. Biochemical and immunocytological approaches to the study of gap junctional communication.In Vitro 16:1057–1067

    CAS  PubMed  Google Scholar 

  • Hertzberg, E.L., Anderson, D., Friedlander, M., Gilula, N. 1982. Comparative analysis of the major polypeptides from liver gap junctions and lens fiber junctions.J. Cell Biol. 92:53–59

    Article  CAS  PubMed  Google Scholar 

  • Horwitz, J., Wong, M.M. 1980. Peptide mapping by limited proteolysis in sodium dodecyl sulfate of the main intrinsic polypeptides isolated from human and bovine lens plasma membranes.Biochim. Biophys. Acta 622:134–143

    CAS  PubMed  Google Scholar 

  • Johnson, K.R., Johnson, R.G. 1982. Bovine lens MP26 is phosphorylatedin vitro by an endogenous cAMP-dependent protein kinase.Fed. Proc. 41:755 (abstr.)

    Google Scholar 

  • Johnson, R.G., Sheridan, J.D. 1971. Junctions between cancer cells in culture: Ultrastructure and permeability.Science 174:717–719

    CAS  PubMed  Google Scholar 

  • Kistler, J., Bullivant, S. 1980. Lens gap junctions and orthogonal arrays are unrelated.FEBS Lett. 111:73–78

    Article  CAS  PubMed  Google Scholar 

  • Kuszak, J., Maisel, H., Harding, C.V. 1978. Gap junctions of chick lens fiber cells.Exp. Eye Res. 27:495–498

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685

    Article  CAS  Google Scholar 

  • Maisel, H., Harding, C.V., Alcala, J.R., Kuszak, J., Bradley, R. 1981. The morphology of the lens.In: The Molecular and Cellular Biology of the Eye Lens. H. Bloemendal, editor. pp. 49–71. Wiley-Interscience, New York

    Google Scholar 

  • Nicholson, B., Gros, D., Revel, J.P. 1982. Tissue specificity in the gap junctional protein.J. Cell Biol. 95:104a (abstr.)

    Google Scholar 

  • Nicholson, B.J., Hunkapiller, M.W., Hood, L.E., Revel, J.-P. 1980. Partial sequencing of the gap junctional protein from rat lens and liver.J. Cell Biol. 87:200a (abstr.)

    Google Scholar 

  • Peracchia, C., Peracchia, L.L. 1980. Gap junction dynamics: Reversible effects of hydrogen ions.J. Cell Biol. 87:719–727

    CAS  PubMed  Google Scholar 

  • Rae, J.L. 1979. The electrophysiology of the crystallin lens.In: Current Topics in Eye Research. J.A. Zadunaisky and H. Davson, editors. pp. 37–90. Academic Press, New York

    Google Scholar 

  • Ramaekers, F.C.S., Selten-Versteegen, A.M.E., Benedetti, E.L., Dunia, I., Bloemendal, H. 1980.In vitro synthesis of the major lens membrane protein.Proc. Natl. Acad. Sci. USA 77:725–729

    CAS  PubMed  Google Scholar 

  • Renart, J., Reiser, J., Stark, G.R. 1979. Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: A method for studying antibody specificity and antigen structure.Proc. Natl. Acad. Sci. USA 76:3116–3120

    CAS  PubMed  Google Scholar 

  • Sas, D., Johnson, K., Menko, S., Johnson, R. 1982. A monoclonal antibody specific for chicken and bovine lens gap junctional proteins.J. Cell Biol. 95:106a (abstr.)

    Google Scholar 

  • Sas, D., Keeling, P., Johnson, K., Johnson, R. 1980. Characterizing gap junction proteins from calf lens: Questions of glycosylation and protease sensitivity.J. Cell Biol. 87:96a (abstr.)

    Google Scholar 

  • Sas, D., Wagoner, M.J., Johnson, R. 1981. Monoclonal antibodies and rabbit antisera to gap junction-rich fractions of bovine lens fiber cell membranes.J. Cell Biol. 91:119a (abstr.)

    Google Scholar 

  • Simionescu, M., Simionescu, N., Palade, G. 1975. Segmental differentiations of cell junctions in the vascular endothelium.J. Cell Biol. 67:863–885

    Article  CAS  PubMed  Google Scholar 

  • Strader, C.D., Raftery, M.A. 1980. Topographic studies of Torpedo acetylcholine receptor subunits as a transmembrane complex.Proc. Natl. Acad. Sci. USA 77:5807–5811

    CAS  PubMed  Google Scholar 

  • Takemoto, L.J., Hansen, J.S., Horwitz, J. 1981. Interspecies conservation of the main intrinisc polypeptide (MIP) of the lens membrane.Comp. Biochem. Physiol. B 68:101–106

    Google Scholar 

  • Voller, A., Bidwell, D.E., Bartlett, A. 1979. The enzyme linked immunosorbent assay (ELISA). Independent publication available from Dynatech Lab., Inc., Alexandria, VA.

    Google Scholar 

  • Waggoner, P.R., Maisel, H. 1978. Immunofluorescent study of a chick lens fiber cell membrane polypetide.Exp. Eye Res. 27:151–157

    Article  CAS  PubMed  Google Scholar 

  • Wong, M.W., Robertson, N.P., Horwitz, J. 1978. Heat induced aggregation of the sodium dodecyl sulfate-solubilized main intrinsic polypeptide isolated from bovine lens plasma membrane.Biochem. Biophys. Res. Commun. 84:158–165

    Article  CAS  PubMed  Google Scholar 

  • Zampighi, G., Simon, S., Robertson, J., McIntosh, T., Costello, M. 1982. On the structural organization of isolated bovine lens fiber junctions.J. Cell Biol. 93:175–189

    Article  CAS  PubMed  Google Scholar 

  • Zigler, J.S., Horwitz, J. 1981. Immunochemical studies on the major intrinsic polypeptides from human lens membrane.Invest. Ophthalmol. Vis. Sci. 21:46–51

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keeling, P., Johnson, K., Sas, D. et al. Arrangement of MP26 in lens junctional membranes: Analysis with proteases and antibodies. J. Membrain Biol. 74, 217–228 (1983). https://doi.org/10.1007/BF02332125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02332125

Key Words

Navigation