Skip to main content
Log in

In situ heterogeneity of peroxisomal oxidase activities: An update

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Oxidases are a widespread group of enzymes. They are present in numerous organisms and organs and in various tissues, cells, and subcellular compartments, such as mitochondria. An important source of oxidases, which is investigated and discussed in this study, are the (micro)peroxisomes. Oxidases share the ability to reduce molecular oxygen during oxidation of their substrate, yielding an oxidized product and hydrogen peroxide. Besides the hydrogen peroxide-catabolizing enzyme catalase, peroxisomes contain one or more hydrogen peroxide-generating oxidases, which participate in different metabolic pathways. During the last four decades, various methods have been developed and elaborated for the histochemical localization of the activities of these oxidases. These methods are based either on the reduction of soluble electron acceptors by oxidase activity or on the capture of hydrogen peroxide. Both methods yield a coloured and/or electron dense precipitate. The most reliable technique in peroxisomal oxidase histochemistry is the cerium salt capture method. This method is based on the direct capture of hydrogen peroxide by cerium ions to form a fine crystalline, insoluble, electron dense reaction product, cerium perhydroxide, which can be visualized for light microscopy with diaminobenzidine. With the use of this technique, it became clear that oxidase activities not only vary between different organisms, organs, and tissues, but that heterogeneity also exists between different cells and within cells, i.e. between individual peroxisomes. A literature review, and recent studies performed in our laboratory, show that peroxisomes are highly differentiated organelles with respect to the presence of active enzymes. This study gives an overview of thein situ distribution and heterogeneity of peroxisomal enzyme activities as detected by histochemical assays of the activities of catalase, and the peroxisomal oxidasesd-amino acid oxidase,l-α-hydroxy acid oxidase, polyamine oxidase and uric acid oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. C. (1981) Heavy metal intensification of DAB-based HRP reaction product.J. Histochem. Cytochem. 29, 775.

    CAS  PubMed  Google Scholar 

  • Allen, J. M., Beard, M. E. &Kleinbergs, S. (1965) The localization of α-hydroxy acid oxidase in renal microbodies.J. Exp. Zool. 160, 329–44.

    Article  CAS  PubMed  Google Scholar 

  • Altman, F. P. (1972) Quantitative dehydrogenase histochemistry with special reference to the pentose shunt dehydrogenases.Prog. Histochem. Cytochem. 4, 225–37.

    CAS  Google Scholar 

  • Altman, F. P. (1976) Tetrazolium salts and formazans.Prog. Histochem. Cytochem. 9(3), 1–51.

    CAS  PubMed  Google Scholar 

  • Altman, F. P. (1980) Tissue stabilizer methods in histochemistry. InTrends in Histochemistry and Cytochemistry (edited by D. Evert & M. O'Connor) pp. 81–101. Amsterdam: Excerpta Medica.

    Google Scholar 

  • Altman, F. P. &Chayen, J. (1966) The significance of a functioning hydrogen-transport system for the retention of ‘soluble’ dehydrogenases in unfixed sections.J. R. Microsc. Soc. 85, 175–80.

    Google Scholar 

  • Ames, B. N., Cathcart, R., Schwiers, E. &Hochstein, P. (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis.Proc. Natl. Acad. Sci. USA 78, 6858–62.

    CAS  PubMed  Google Scholar 

  • Anderson, M. M., Ast, T., Nicolaou, A., Valko, K. & Gibbons, W. A. (1994) Nitric oxide effects on polyamine pathways in cultured hepatocytes.Biochem. Soc. Trans. 22, 295S.

    Google Scholar 

  • Angermüller, S. (1989) Peroxisomal oxidases: cytochemical localization and biological relevance.Prog. Histochem. Cytochem. 20(1), 1–65.

    PubMed  Google Scholar 

  • Angermüller, S. &Fahimi, H. D. (1981) Selective cytochemical localization of peroxidase, cytochrome oxidase and catalase in rat liver with 3,3-diaminobenzidine.Histochemistry 71, 33–44.

    Article  PubMed  Google Scholar 

  • Angermüller, S. &Fahimi, H. D. (1986) Ultrastructural cytochemical localization of uricase in uricase in peroxisomes of rat liver.J. Histochem. Cytochem. 34, 159–65.

    PubMed  Google Scholar 

  • Angermüller, S. &Fahimi, H. D. (1988a) Heterogeneous staining ofd-amino acid oxidase in peroxisomes of rat liver and kidney. A light and electron microscopic study.Histochemistry 88, 277–85.

    PubMed  Google Scholar 

  • Angermüller, S. &Fahimi, H. D. (1988b) Light microscopic visualization of the reaction product of cerium used for localization of peroxisomal oxidases.J. Histochem. Cytochem. 36, 23–8.

    PubMed  Google Scholar 

  • Angermüller, S., Leupoild, C., Völkl, A. &Fahimi, H. D. (1986a) Electron microscopic cytochemical localization of α-hydroxyacid oxidase in rat liver. Association with the crystalline core and matrix of peroxisomes.Histochemistry 85, 403–9.

    PubMed  Google Scholar 

  • Angermüller, S., Leupold, C., Zaar, K. &Fahimi, H. D.(1986b) Electron microscopic cytochemical localization of α-hydroxyacid oxidase in rat kidney cortex. Heterogeneous staining of peroxisomes.Histochemistry 85, 411–18.

    PubMed  Google Scholar 

  • Antonenkov, V. D. &Panchenko, L. F. (1978) Organization of urate oxidase in peroxisomal nucleoids.FEBS Lett. 88, 151–4.

    Article  CAS  PubMed  Google Scholar 

  • Arborgh, B., Ericsson, J. L. &Helminen, H. (1971) Inhibition of renal acid phosphatase and aryl sulphatase activity by by glutaraldehyde fixation.J. Histochem. Cytochem. 19, 449–51.

    CAS  PubMed  Google Scholar 

  • Arias, J. A., Moser, A. B. &Goldfischer, S. L. (1985). Ultrastructural and cytochemical demonstration of peroxisomes in cultured fibroblasts from patients with peroxisomal deficiency disorders.J. Cell. Biol. 100, 1789–92.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, G. &Holtzman, E. (1978) Microperoxisomes in the central nervous system of the postnatal rat.Brain Res. 155, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, G. &Holtzman, E. (1980) Ultrastructural localization of α-OH acid oxidase in peroxisomes with the CeCl3 technique.J. Histochem. Cytochem. 28, 1025–8.

    CAS  PubMed  Google Scholar 

  • Arnold, G., Liscum, L. &Holtzman, E. (1977) Cytochemistry ofd-amino acid oxidase in rat cerebellum and kidney.J. Cell Biol. 75, 202a.

    Google Scholar 

  • Arnold, G., Liscum, L. &Holtzman E. (1979) Ultrastructural localization ofd-amino acid oxidase in microperoxisomes of the rat nervous system.J. Histochem. Cytochem. 27, 735–45.

    CAS  PubMed  Google Scholar 

  • Babior, B. M. (1978) Oxygen-dependent microbial killing by phagocytes.New Eng. J. Med. 298, 659–68.

    CAS  PubMed  Google Scholar 

  • Badwey, J. A. &Karnovsky, M. L. (1980) Active oxygen species and the functions of phagocytic leukocytes.Ann. Rev. Biochem. 49, 695–726.

    CAS  PubMed  Google Scholar 

  • Balfe, A., Hoefler, G., Chen, W. W. &Watkins, P. A. (1990) Aberrant subcellular localization of peroxisomal 3-ketoacyl-CoA thiolase in the Zellweger syndrome and rhizomelic chondrodysplasia punctata.Pediatr. Res. 27, 304–10.

    CAS  PubMed  Google Scholar 

  • Batelli, F. &Stern, L. (1909) Untersuchungen über die Urikase in den Tiergeweben.Biochem. Z. 19, 219–53.

    Google Scholar 

  • Baudhuin, P., Beaufay, H. &De Duve, C. (1965) Combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparations enriched in lysosomes or in particles containing urate oxidase,d-amino acid oxidase, and catalase.J. Cell Biol. 26, 219–43.

    Article  CAS  PubMed  Google Scholar 

  • Beard, M. E. &Novikoff, A. B. (1969) Distribution of peroxisomes (microbodies) in the nephron of the rat: a cytochemical study.J. Cell Biol. 42, 501–18.

    Article  CAS  PubMed  Google Scholar 

  • Beard, M. E., Baker, R., Conomos, P., Pugatch, D. &Holtzman, E. (1985) Oxidation of oxalate and polyamines by rat peroxisomes.J. Histochem. Cytochem. 33, 460–4.

    CAS  PubMed  Google Scholar 

  • Becker, B. F. (1993) Towards a physiological function of uric acid.Free Rad. Biol. Med. 14, 615–31.

    Article  CAS  PubMed  Google Scholar 

  • Becker, B. F., Reinholz, N., Özçelik, T., Leipert, B. &Gerlach, E. (1989) Uric acid as radical scavenger and antioxidant in the heart.Pflügers Arch. 415, 127–35.

    Article  CAS  PubMed  Google Scholar 

  • Beier, K., Völkl, A., Hashimoto, T. &Fahimi, H. D. (1988) Selective induction of peroxisomal enzymes by the hypolipidemic drug bezafibrate. Detection of modulations by automatic image analysis in conjunction with immunoelectron microscopy and immunoblotting.Eur. J. Cell Biol. 46, 383–93.

    CAS  PubMed  Google Scholar 

  • Beier, K., Völkl, A. &Fahimi, H. D. (1993) The impact of aging on enzyme proteins of rat liver peroxisomes: quantitative analysis by immunoblotting and immunoelectron microscopy.Virch. Arch. Cell. Pathol. 63, 139–46.

    CAS  Google Scholar 

  • Bey, P., Bolkenius, F. N., Seiler, N. &Casara, P. (1985)N-2,3-Butadienyl-1,4-butanediamine derivatives: potent irreversible inactivators of mammalian polyamine oxidase.J. Med. Chem. 28, 1–2.

    Article  CAS  PubMed  Google Scholar 

  • Blanchard, H., Green, D. E., Nocito-Caroll, V. &Ratner, S. (1946)l-hydroxy acid oxidase.J. Biol. Chem. 163, 137–44.

    CAS  Google Scholar 

  • Blaschko, H. &Hawkins, J.(1952)d-amino acid oxidase in molluscan liver.Biochem J. 52, 306–10.

    CAS  PubMed  Google Scholar 

  • Blatiner, J., Dörsam, H. &Clayton, C. E. (1995) Function of N-terminal import signals in trypanosome microbodies.FEBS Lett. 360, 310–4.

    Google Scholar 

  • Boadle, M. C. &Bloom, F. E. (1969) A method for the structural localization of monoamine oxidase.J. Histochem. Cytochem. 17, 331–40.

    CAS  PubMed  Google Scholar 

  • Böck, P., Kramar, R. &Pavelska, M. (1980) Peroxisomes and related particles in animal tissues.Cell Biology Monographs, Vol. 7, pp. 1–239. Wien: Springer Verlag.

    Google Scholar 

  • Bolkenius, F. N. &Seiler, N. (1981) Acetylderivates as intermediates in polyamine catabolism.Int. J. Biochem. 13, 287–92.

    Article  CAS  PubMed  Google Scholar 

  • Bolkenius, F. N., Bey, P. &Seiler, N. (1985) Specific inhibition of polyamine oxidasein vivo is a method for the elucidation of its physiological role.Biochim. Biophys. Acta 838, 69–76.

    CAS  PubMed  Google Scholar 

  • Borst, P. (1989) Peroxisome biogenesis revisited.Biochim. Biophys. Acta 1008, 1–13.

    CAS  PubMed  Google Scholar 

  • Bowen, P., Lee, C. S. M., Zellweger, H. &Lindenberg, R. (1964) A familial syndrome of multiple congenital defects.Bull. Johns Hopkins Hosp. 114, 402–14.

    CAS  PubMed  Google Scholar 

  • Bray, R. C. (1975) Molybdenum iron-sulfur flavin hydrolases and related enzymes. InThe Enzymes. Vol 12 (edited by P. D. Boyer) 3rd edn., pp. 299–419. New York: Academic Press.

    Google Scholar 

  • Briggs, R. T., Drath, D. B., Karnovsky, M. L. &Karnovsky, M. J. (1975) Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method.J. Cell Biol. 67, 566–86.

    Article  CAS  PubMed  Google Scholar 

  • Bright, H. J. &Porter, D. J. T. (1975) Flavoprotein oxidases. InThe Enzymes, Vol. 12 (edited by P. D. Boyer) 3rd edn., p. 421. New York: Academic Press.

    Google Scholar 

  • Bruder, G., Heid, H. W., Jarasch, E.-D., Keenan, T. W. &Mather, I. H. (1982) Characteristics of membrane-bound and soluble forms of xanthine oxidase from milk and endothelial cells of capillaries.Biochim. Biophys Acta 701, 357–69.

    CAS  PubMed  Google Scholar 

  • Cablé, S., Kedinger, M. &Dauça, M. (1993) Peroxisomes and peroxisomal enzymes along the crypt-villus axis of the rat intestine.Differentiation 54, 99–108.

    PubMed  Google Scholar 

  • Casero, R. A., Gabrielson, E. W. &Pegg, A. E. (1994) Immunohistochemical staining of human spermidine/spermineN 1-acetyltransferase superinduced in response to treatment with antitumour polyamine analogues.Cancer Res. 54, 3955–8.

    CAS  PubMed  Google Scholar 

  • Cestaro, B. (1994) Effects of arginine, S-adenosylmethionine and polyamines on nerve regeneration.Acta Neurol. Scand., Suppl.154, 32–41.

    Google Scholar 

  • Chalmers, G. R. &Edgerton, V. R. (1989) Marked and variable inhibition by chemical fixation of cytochrome oxidase and succinate dehydrogenase in single motoneurons.J. Histochem. Cytochem. 37, 899–901.

    CAS  PubMed  Google Scholar 

  • Chapman, G. E. & Wallace, H. M. (1994) Spermine prevents lipid peroxidation induced by essential fatty acids in human breast cancer cells.Biochem. Soc. Trans. 22, 401S.

    Google Scholar 

  • Chayen, J., Bitensky, L. &Butcher, R. G. (1973)Practical Histochemistry. London: Wiley.

    Google Scholar 

  • Cornelis, A., Nyssen, M., De Zanger, R. &Roels, F. (1982) Automated measurement of catalase reaction product and peroxisomal size in human liver through STEM. InElectron Microscopy 1982, Proceedings of the 10th International Congress on Electron Microscopy, Vol. 3, pp. 263–4, Hamburg: Deutsche Gesellschaft für Elektronenmikroskopie.

    Google Scholar 

  • Dabholkar, A. S. (1986) Ultrastructural localization of catalase andd-amino acid oxidase in ‘normal’ fetal mouse liver.Experientia 42, 144–7.

    Article  CAS  PubMed  Google Scholar 

  • Damsz, B., Dannenhoffer, J. M., Bell, J. A. &Webb, M. A. (1994) Immunocytochemical localization of uricase in peroxisomes of soybean cotyledons.Plant Cell Physiol. 35, 979–82.

    CAS  Google Scholar 

  • D'Aniello, A., D'Onofrio, G., Pischetola, M., D'Aniello, G., Vetere, A., Petrucelli, L. &Fisher, G. H. (1993) Biological role ofd-amino acid oxidase andd-aspartate oxidase. Effects ofd-amino acids.J. Biol. Chem. 268, 26941–9.

    PubMed  Google Scholar 

  • Danpure, C. J., Cooper, P. J., Wise, P. J. &Jennings, P. R. (1989) An enzyme trafficking defect in two patients with primary hyperoxaluria type I: peroxisomal alanine: glyoxylate aminotransferase rerouted to mitochondria.J. Cell Biol. 108, 1345–52.

    Article  CAS  PubMed  Google Scholar 

  • De Craemer, D., Rickaert, F., Wanders, R. J. A. &Roels, F. (1989) Hepatic peroxisomes are smaller in primary hyperoxaluria type I (PH I). (Cytochemistry and morphometry).Micron Microsc. Acta 20, 125–6.

    Google Scholar 

  • De Craemer, D., Espeel, M., Langendries, M., Schutgens, R. B. H., Hashimoto, T. &Roels, F. (1990) Post-mortem visualization of peroxisomes in rat and in human liver.Histochem. J. 22, 36–44.

    Article  PubMed  Google Scholar 

  • De Craemer, D., Kerckaert, I. &Roels, F. (1991) Hepatocellular peroxisomes in human alcoholic and drug-induced hepatitis: a quantative study.Hepatology 14, 811–17.

    PubMed  Google Scholar 

  • De Craemer, D., Pauwels, M., Vergeylen, A., Roels, F. &Van den Branden, C. (1993a) Peroxisomes in liver, kidney and duodenum of nude mice bearing xenografts of human pancreatic adenocarcinomas.Virchows. Arch. Cell. Pathol. 64, 7–12.

    Google Scholar 

  • De Craemer, D., Pauwels, M. &Roels, F. (1993b) Peroxisomes in cirrhosis of the human liver: a cytochemical, ultrastructural and quantitative study.Hepatology 17, 404–10.

    PubMed  Google Scholar 

  • De Craemer, D., Vamecq, F., Roels, F., Vallée, L., Pauwels, M. &van den Branden, C. (1994) Peroxisomes in liver, heart, and kidney of mice fed a commercial fish oil preparation: original data and review on peroxisomal changes induced by high-fat diets.J. Lipid Res. 35, 1241–50.

    PubMed  Google Scholar 

  • De Duve, C. &Baudhuin, P. (1966) Peroxisomes (microbodies and related particles).Physiol. Rev. 46, 323–57.

    PubMed  Google Scholar 

  • Deisseroth, A. &Dounce, A. L. (1970) Catalase: physical and chemical properties, mechanism of catalysis, and physiological role.Physiol. Rev. 50, 319–75.

    CAS  PubMed  Google Scholar 

  • Del Rio, L. A., Sandalio, L. M., Palma, J. M., Bueno, P. &Corpas, F. J. (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications.Free Radic. Biol. Med. 13, 557–80.

    PubMed  Google Scholar 

  • Dhaunsi, G. S., Gulati, S., Singh, A. K., Orak, J. K., Asayama, K. &Singh, I. (1992) Demonstration of Cu−Zn superoxide dismutase in rat liver peroxisomes. Biochemical and immunochemical evidence.J. Biol. Chem. 267, 6870–3.

    CAS  PubMed  Google Scholar 

  • Dixon, M. &Kleppe, K. (1965),d-amino acid oxidase. II. Specificity, competitive inhibition and reaction sequence.Biochim. Biophys. Acta 96, 368–89.

    CAS  Google Scholar 

  • Dodt, G., Braverman, N., Wong, C., Moser, A., Moser, H. W., Watkins, P., Valle, D. &Gould, S. J. (1995) Mutations in the PTS1 receptor genes,PXR1, define complementation group 2 of the peroxisome biogenesis disorders.Nature Genet. 9, 115–21.

    Article  CAS  PubMed  Google Scholar 

  • Dohan, J. S. (1940) Glycolic acid oxidase.J. Biol. Chem. 135, 793–4.

    CAS  Google Scholar 

  • Duley, J. A. &Holmes, R. S. (1976) L-α-hydroxy acid oxidase isozymes. Purification and molecular properties.Eur. J. Biochem. 63, 163–73.

    Article  CAS  PubMed  Google Scholar 

  • Egger, G. (1973) Zur Methodik der elektronenmikroskopische Darstellung der Succinat-Tetrazoliumsalzreduktase mit TC-NBT.Histochemie 33, 3568–9.

    Article  CAS  PubMed  Google Scholar 

  • Fmami, S., Hanley, K. P., Esterly, N. B., Daniallinia, N. &Williams, M. L. (1994).X-linked dominant ichthyosis with peroxisomal deficiency.Arch. Dermatol. 130, 325–36.

    Google Scholar 

  • Espeel, M., Hashimoto, T., De Craemer, D. &Roels, F. (1990) Immunocytochemical localization of peroxisomal β-oxidation enzymes in cryostat and paraffin sections of human post mortem liver.Histochem. J. 22, 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Espeel, M., Roels, F., Van Maldergem, L., De Craemer, D., Wanders, R. J. A. &Hashimoto, T. (1991). Peroxisomal localization of immunoreactive β-oxidation enzymes in a neonate with a β-oxidation defect. Pathological observations in liver, adrenal cortex and kidney.Virchows Archiv. A Pathol. Anat. 419, 301–8.

    Article  CAS  Google Scholar 

  • Espeel, M., Brière, N., De Craemer, D., Jaunieux, E. &Roels, F. (1993a) Catalase-negative peroxisomes in human embryonic liver.Cell Tissue Res. 272, 89–92

    Article  CAS  PubMed  Google Scholar 

  • Espeel, M., Heikoop, J. C., Smeitink, J. A. M., Beemer, F. A., De Craemer, D., Van Den Berg, M., Hashimoto, T., Wanders, R. J. A., Schutgens, R. B. H., Poll-The, B. T. &Roels, F. (1993b) Cytoplasmic catalase and ghostlike peroxisomes in the liver from a child with atypical chondrodysplasia punctata.Ultrastruct. Pathol. 17, 623–36.

    CAS  PubMed  Google Scholar 

  • Fahimi, H. D. (1968) Cytochemical localization of peroxidase activity in rat hepatic microbodies.J. Histochem. Cytochem. 16, 547–50.

    CAS  PubMed  Google Scholar 

  • Fahimi, H. D. (1969) Cytochemical localization of peroxidatic activity of catalase in rat hepatic microbodies (peroxisomes).J. Cell Biol. 43, 275–88.

    Article  CAS  PubMed  Google Scholar 

  • Fahimi, H. D. (1973) Diffusion artifacts in cytochemistry of catalase.J. Histochem. Cytochem. 21, 999–1009.

    CAS  PubMed  Google Scholar 

  • Fahimi, H. D. (1974) Effect of buffer storage on fine structure and catalase cytochemistry of peroxisomes.J. Cell Biol. 63, 675–83.

    Article  CAS  PubMed  Google Scholar 

  • Fahimi, H. D. &Amrasingham, C. R. (1964) Cytochemical localization of lactic dehydrogenase in white skeletal muscle.J. Cell Biol. 22, 29–48.

    Article  CAS  PubMed  Google Scholar 

  • Fahimi, H. D., Gray, B. A. &Herzog, V. (1976) Cytochemical localization of catalase and peroxidase in sinusoidal cells of rat liver.Lab. Invest. 34, 192–201.

    CAS  PubMed  Google Scholar 

  • Fahimi, H. D., Kino, M., Hicks, L., Thorp, K. A. &Abelman, W. H. (1979) Increased myocardial catalase in rats fed ethanol.Am. J. Pathol. 96, 373–90.

    CAS  PubMed  Google Scholar 

  • Fahimi, H. D., Reinicke, A., Sujutta, M., Yokota, S., Özel, M., Hartig, F. &Stegmeier, K. (1982) The short-and long-term effects of bezafibrate in the rat.Ann. NY Acad. Sci. 386, 111–13.

    CAS  PubMed  Google Scholar 

  • Fahimi, H. D., Baumgart, E. &Volkl, A. (1993) Ultrastructural aspects of the biogenesis of peroxisomes in rat liver.Biochimie 75, 201–8.

    Article  CAS  PubMed  Google Scholar 

  • Farber, E. &Bueding, E. (1956) Histochemical localization of specific oxidative enzymes. V. The dissociation of succinic dehydrogenase from carriers by lipase and the specific histochemical localization of the dehydrogenase with phenazine methosulphate and tetrazolium salts.J. Histochem. Cytochem. 4, 357–62.

    CAS  PubMed  Google Scholar 

  • Farber, E., Sternberg, W. H. &Pearce, N. A. M. (1958) Histochemical localization of choline oxidase and D-amino acid oxidase with tetrazolium salts and phenazine methosulfate.J. Histochem. Cytochem. 6, 389.

    Google Scholar 

  • Féray, A., Hourmant, A., Penot, M., Caroff, J. &Cann-Moisan, C. (1994) Polyamines and morphogenesis. Effects of methyl-glyoxal-bis(guanylhydrazone).Bot. Acta. 107, 18–23.

    Google Scholar 

  • Fournier, B., Smeitink, J. A. M., Dorland, L., Berger, R., Boudubray, J. M. &Poll-The, B. T. (1994) Peroxisomal disorders: a review.J. Inher. Metab. Dis. 17, 470–86.

    CAS  PubMed  Google Scholar 

  • Frederiks, W. M. &Bosch, K. S. (1993) Quantitative aspects of enzyme histochemistry on sections of freeze substituted glycol methacrylate-embedded rat liver.Histochemistry 100, 297–302.

    Article  CAS  PubMed  Google Scholar 

  • Frederiks, W. M. &Marx, F. (1985) Quantitative aspects of the histochemical tetrazolium salt reaction on monoamine oxidase activity in rat liver.Histochem. J. 17, 707–15.

    Article  CAS  PubMed  Google Scholar 

  • Frederiks, W. M. &Marx, F. (1993) A histochemical procedure for light microscopic demonstration of xanthine oxidase activity in unfixed cryostat sections using cerium ions and a semipermeable membrane technique.J. Histochem. Cytochem. 41, 667–70.

    CAS  PubMed  Google Scholar 

  • Frederiks, W. M., Patel, H. R. H., Marx, F., Gossrau, R., Kooij, A. &Van Noorden, C. J. F. (1990) Light microscopical detection of D-amino acid oxidase activity in unfixed cryostat sections of rat kidney and liver using the cerium-DAB-co-balt-H2O2 procedure and a semipermeable membrane.Acta Histochem. Suppl. 40, 95–100.

    Google Scholar 

  • Frederiks, W. M., Van Noorden, C. J. F., Marx, F., Gallagher, P. T. &Swann, B. P. (1993a) In situ kinetic measurements of D-amino acid oxidase in rat liver with respect to its substrate specificity.Histochem. J. 25, 578–82.

    CAS  PubMed  Google Scholar 

  • Frederiks, W. M., Bosch, K. S., Ankum, M. &Wanders, R. J. A. (1993b). Histochemistry of peroxisomal enzyme activities: a tool in the diagnosis of Zellweger syndrome.J. Inter. Metab. Dis. 16, 921–8.

    CAS  Google Scholar 

  • Frederiks, W. M., Bosch, K. S., Van Den Munckhof, R. J. M. &Van Noorden, C. J. F. (1994) A quantitative histochemical study of xanthine oxidase activity in rat liver using the cerium capture method in the presence of polyvinyl alcohol.J. Histochem. Cytochem. 42, 1091–7.

    CAS  PubMed  Google Scholar 

  • Frederiks, W. M., Ankum, M., Bosch, K. S., Vreeling-Sindelárová, H., Schellens, J. P. M. &Van Noorden, C. J. E. (1995a) A cytophotometric and electron microscopical study on catalase activity in serial cryostat sections of rat liver.Histochem. J.,27, 681–8.

    Article  CAS  PubMed  Google Scholar 

  • Frederiks, W. M., Bosch, K. S. &Van Den Munckhof, R. J. M.(1995b) Extinction coefficient of polymerized diaminobenzidine complexed with cobalt as final reaction product of histochemical oxidase reactions.Histochem. Cell Biol.,109, 473–7.

    Google Scholar 

  • Fujiwara, K. (1994) An evaluation of polyamine immunocytochemistry using immunocytochemical model systems.Histochemistry,101, 287–94.

    Article  CAS  PubMed  Google Scholar 

  • Gaunt, G. L. &De Duve, C. (1976) Subcellular distribution of D-amino acid oxidase and catalase in rat brain.J. Neurochem. 26, 749–59.

    CAS  PubMed  Google Scholar 

  • Geerts, A. &Roels, F. (1981) Quantitation of catalase activity by microspectrophotometry after diaminobenzidine staining.Histochemistry 72, 357–67.

    Article  CAS  PubMed  Google Scholar 

  • Geerts, A. &Roels, F. (1982)In vivo cooperation between hepatic catalase and superoxide dismutase demonstrated by diethyldithiocarbamate.FEBS Lett. 140, 245–7.

    Article  CAS  PubMed  Google Scholar 

  • Geerts, A., De Prest, B. &Roels, F. (1984) On the topology of the catalase biosynthesis and degradation in the guinea pig liver. A cytochemical study.Histochemistry 80, 339–45.

    Article  CAS  PubMed  Google Scholar 

  • Gunner, G. G., Burtner, H. T. &Brown, G. W. (1957) The histochemical demonstration of monoamine oxidase activity by tetrazolium salts.J. Histochem. Cytochem. 5, 591–600.

    Google Scholar 

  • Golfischer, S. &Essner, E. (1969) Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine.J. Histochem. Cytochem. 17, 675–85.

    Google Scholar 

  • Goldfischer, S. &Reddy, J. K. (1984) Peroxisomes (microbodies) in cell pathology.Int. Rev. Exptl. Pathol. 26, 45–84.

    CAS  Google Scholar 

  • Goldfischer, S., Moore, C. L., Johnson, A. B., Spiro, A. J., Valsamis, M. P., Wisniewsky, H. K., Ritch, R. H., Norton, W. T.,Rapin, I. &Gartner, L. M. (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome.Science 182, 62–4.

    CAS  PubMed  Google Scholar 

  • Goldfischer, S., Collins, J., Rapin, I., Coltoff-Schiller, B., Chang, C. H., Nigro, M., Black, V. H., Javitt, N. B., Moser, H. W. &Lazarow, P. B. (1985) Peroxisomal defects in neonatal-onset and X-linked adrenoleukodystrophies.Science 227, 67–9.

    CAS  PubMed  Google Scholar 

  • Gorgas, K. &Krisans, S. K. (1989) Zonal heterogeneity of peroxisome proliferation and morphology in rat liver after gemfibrozil treatment.J. Lipid. Res. 30, 1859–75.

    CAS  PubMed  Google Scholar 

  • Gossrau, R., Van Noorden, C. J. F. &Frederiks, W. M. (1989) Enhanced light microscopic visualization of oxidase activity with the cerium capture method.Histochemistry 92, 349–53.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. J., Keller, G.-A. &Subramani, S. (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase.J. Cell Biol. 105, 2923–31.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. J., Keller, G.-A. &Subramani, S. (1988) Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins.J. Cell Biol. 107, 897–905.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. J., Keller, G.-A., Hosken, N., Wilkinson, J. &Subramani, S. (1989) A conserved tripeptide sorts proteins to peroxisomes.J. Cell Biol. 108, 1657–64.

    Article  CAS  PubMed  Google Scholar 

  • Govaerts, L. C. P., Van Den Berg, G. A., Theeuwes, A., Muskiet, F. A. J. &Monnens, L. A. H. (1990) Urinary polyamine and metabolite excretion by children with Zellweger's syndrome.Clin. Chim. Acta 192, 61–8.

    CAS  PubMed  Google Scholar 

  • Graham, R. C. &Karnowsky, M. J. (1965) The histochemical demonstration of uricase activity.J. Histochem. Cytochem. 13, 448–53.

    CAS  PubMed  Google Scholar 

  • Graham, R. C. &Karnovsky, M. J. (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique.J. Histochem. Cytochem. 14, 291–302.

    CAS  PubMed  Google Scholar 

  • Granger, D. N., Rutili, G. &Mccord, J. M. (1981) Superoxide radicals in feline intestinal ischemia.Gastroenterology 81, 22–9.

    CAS  PubMed  Google Scholar 

  • Hamilton, G. A. (1985) Peroxisomal oxidases and suggestions for the mechanism of action of insulin and other hormones.Adv. Enzymol. 57, 85–178.

    CAS  PubMed  Google Scholar 

  • Hamilton, G. A., Buckthal, D. J., Mortensen, R. M. &Zerby, K. W. (1979) Reaction of cysteamine and other amine metabolites with glyxylate and oxygen catabolized by mammalian D-amino acid oxidase.Proc. Natl. Acad. Sci. USA 76, 2625–9.

    CAS  PubMed  Google Scholar 

  • Hamilton, G. A., Afefy, H. Y., Al-Arab, M. M., Brush, E. J., Buckthal, D. J., Burns, C. L., Harris, R. K., Ibrahim, D. A., Kiselilca, S., Law, A. W., Ryall, R. P., Skorczynski, S. S. &Venkatesan, P. P. (1987) Peroxisomal oxidases and their probable role in controlling animal metabolism. InPeroxisomes in Biology and Medicine (edited by H. D. Fahimi & H. Sies) pp. 223–33. Berlin: Springer Verlag.

    Google Scholar 

  • Hand, A. R. (1975) Ultrastructural localization of L-α-hydroxy acid oxidase in rat liver peroxisomes.Histochemistry 41, 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Hand, A. R. (1979) Cytochemical detection of peroxisomal oxidases.J. Histochem. Cytochem. 27, 1367–70.

    CAS  PubMed  Google Scholar 

  • Hanker, J. S. (1975) Ultrastructural cytochemistry of the oxidoreductases. In:Electron Microscopy of Enzymes. Principles and Methods. Vol. 4 (edited by M. A. Hayat) pp. 1–139. New York: Van Nostrand Reinhold Co.

    Google Scholar 

  • Hanker, J. S. (1979) Osmiophilic reagents in electronmicroscopic histochemistry.Prog. Histochem. Cytochem. 12(1), 1–85.

    CAS  PubMed  Google Scholar 

  • Hanker, J. S., Anderson, W. A. &Bloom, F. E. (1972) Osmiophilic polymer generation: catalysis by transition metal compounds in ultrastructural cytochemistry.Science 175, 991–3.

    CAS  PubMed  Google Scholar 

  • Hayashi, H., Suga, T. &Niinobe, S. (1971) Studies on peroxisomes. I. Intraparticulate localization of peroxisomal enzymes in rat liver.Biochim. Biophys. Acta 252, 58–68.

    CAS  PubMed  Google Scholar 

  • Heby, O. (1981) Role of polyamines in the control of cell proliferation and differentiation.Differentiation 19, 1–20.

    CAS  PubMed  Google Scholar 

  • Henderson, B., Loveridge, N. &Robertson, W. R. (1978) A quantitative study of the effects of different grades of polyvinyl alcohol on the activities of certain enzymes in unfixed tissue sections.Histochem. J. 10, 453–60.

    Article  CAS  PubMed  Google Scholar 

  • Herzog, V. &Fahimi, H. D. (1973) An improved cytochemical method for demonstration of the peroxidatic activity of beef liver catalase (BLC).Histochem. J. 21, 412.

    Google Scholar 

  • Herzog, V. &Fahimi, H. D. (1974a) The effect of glutaraldehyde on catalase. Biochemical and cytochemical studies with beef liver catalase and rat liver peroxisomes.J. Histochem. Cytochem. 60, 303–11.

    CAS  Google Scholar 

  • Herzog, V. &Fahimi, H. D. (1974b) Microbodies (peroxisomes) containing catalase in myocardium: morphological and biochemical evidence.Science 185, 271–3.

    CAS  PubMed  Google Scholar 

  • Herzog, V. &Fahimi, H. D. (1974c) Calorimetric and cytochemical studies for the determination of optimal conditions for the demonstration of catalase. InElectron Microscopy and Cytochemistry (edited by E. Wisse, W. Th. Daems, I. Molenaar & P. Van Duijn) pp. 111–13. Amsterdam: North Holland Publishing Co.

    Google Scholar 

  • Herzog, V. &Fahimi, H. D. (1973) An improved cytochemical method for demonstration of the peroxidatic activity of beef liver catalase (BLC).Histochem. J. 21, 412.

    Google Scholar 

  • Herzog, V. &Fahimi, H. D. (1975) Identification of peroxisomes (microbodies) in mouse myocardium.J. Mol. Cell. Cardiol. 8, 271–81.

    Google Scholar 

  • Herzog, V. &Fahimi, H. D. (1976) Intracellular distinction between peroxidase and catalase in exocrine cells of rat lacrimal gland: a biochemical and cytochemical study.Histochemistry 46, 273–86.

    CAS  PubMed  Google Scholar 

  • Hirai, K. I. (1968) Specific affinity of oxidized amine dye (radical intermediate) for heme enzymes: study in microscopy and spectrophotometry.Acta Histochem. Cytochem. 1, 43–55.

    Google Scholar 

  • Hiraoka, T., Hirai, K.-I. &Uyeda, T. (1985) A microspectrophotometric quantification of cytochrome oxidase activity by means of color-modified diaminobenzidine reaction.Acta Histochem. Cytochem. 18, 283–92.

    CAS  Google Scholar 

  • Hisada, R. &Yagi, T. (1977) 1-Methoxy-5-methylphenazinium methyl sulfate. A photochemically stable electron mediator between NADH and various electron acceptors.J. Biochem. 82, 1469–73.

    CAS  PubMed  Google Scholar 

  • Höltta, E. (1977) Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase.Biochemistry 16, 91–100.

    PubMed  Google Scholar 

  • Holtzman, E., Teichberg, S., Abrahams, S. J., Cithowitz, E., Crain, S. M., Kawai, N. &Peterson, E. R. (1973) Notes on synaptic vesicles and related structures, endoplasmic reticulum, lysosomes and peroxisomes in nervous tissue and the adrenal gland.J. Histochem. Cytochem. 21, 349–85.

    CAS  PubMed  Google Scholar 

  • Hopwood, D. (1991) Fixation of tissue for histochemistry. InHistochemical and Immunohistochemical Techniques. Applications to Pharmacology and Toxicology (edited by P. H. Bach & J. R. J. Baker) pp. 147–65: London: Chapman & Hall.

    Google Scholar 

  • Horiike, K., Arai, R., Tojo, H., Yamano, T., Nozaki, M. &Maeda, T. (1985) Histochemical staining of cells containing flavoenzymed-amino acid oxidase based on its enzyme activity: Application of a coupled peroxidation method.Acta Histochem. Cytochem. 18, 539–50.

    CAS  Google Scholar 

  • Hougaard, D. M. (1992) Polyamine cytochemistry: Localization and possible functions of polyamines.Int. Rev. Cytol. 138, 51–88.

    CAS  PubMed  Google Scholar 

  • Hruban, Z. &Rechcigl, M. (1969) Microbodies and related particles.Int. Rev. Cytol. (Suppl.)1, 1–296.

    Google Scholar 

  • Hruban, Z. &Swift, H. (1964) Uricase: localization in hepatic, microbodies.Science 146, 1316–7.

    CAS  PubMed  Google Scholar 

  • Hruban, Z., Vigil, E. L., Slesers, A. &Hopkins, E. (1972) Microbodies: constituent organelles of animal cells.Lab. Invest. 27, 184–91.

    CAS  PubMed  Google Scholar 

  • Hsu, S.-M. &Soban, E. (1982) Color modification of diamino benzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry.J. Histochem. Cytochem. 30, 1079–82.

    CAS  PubMed  Google Scholar 

  • Huang, A. H. C. &Beevers, H. (1973) Localization of enzymes within microbodies.J. Cell Biol. 58, 379–89.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C.-J. &Severin, E. (1993) Enzyme activities of six different dehydrogenases in Ehrlich ascites cells measured by flow cytometry.Acta Histochem. 94, 33–45.

    CAS  PubMed  Google Scholar 

  • Huynh, M. S., Horiike, K., Tojo, H., Katagiri, M. &Yamano, T. (1985) Kinetic properties of rat kidneyd-amino acid oxidase associated with peroxisomes.Comp. Biochem. Physiol. 80B, 425–30.

    CAS  Google Scholar 

  • Ichikawa, M., Nishino, T., Nishino, T. &Ichikawa, A. (1992) Subcellular localization of xanthine oxidase in rat hepatocytes: high-resolution immunoelectron microscopic study combined with biochemical analysis.J. Histochem. Cytochem. 40, 1097–103.

    CAS  PubMed  Google Scholar 

  • Inestrosa, N. C., Bronfman, M. &Leighton, F. (1979) Detection of fatty acyl-coenzyme, A oxidase activity.Biochem. J. 182, 779–88.

    CAS  PubMed  Google Scholar 

  • Jänne, J. &Morris, D. R. (1984) Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis (guanylhydrazone) and their cellular uptake during lymphocyte activationBiochem. J. 218, 947–51.

    PubMed  Google Scholar 

  • Jarasch, E.-D., Grund, C., Bruder, G., Heid, H. W., Keenan, T. W. &Franke, W. W. (1981) Localization of xanthine oxidase in mammary gland epithelium and capillary endothelium.Cell 25, 67–82.

    CAS  PubMed  Google Scholar 

  • Jessen, K. R., Saffrey, M. J., Baluk, P., Hanani, M. &Burnstock, G. (1983) The enteric nervous system in tissue culture. III. Studies on neuronal survival and the retention of biochemical and morphological differentiation.Brain Res. 262, 49–62.

    CAS  PubMed  Google Scholar 

  • Just, W. W., Gorgas, K., Hartl, F.-U., Heinemann, P., Salzer, M. &Schimassek, H. (1989) Biochemical effects and zonal heterogeneity of peroxisome proliferation, induced by perfluorocarboxylic acids in rat liver.Hepatology 9, 570–81.

    CAS  PubMed  Google Scholar 

  • Halina, M. &Palmer, J. M. (1968) The reduction of tetrazolium salts by plant mitochondria.Histochemie 14, 366–74.

    Google Scholar 

  • Kalina, M., Plapinger, R. E., Hoshino, Y. &Seligman, A. M. (1972) Nonosmiophilic tetrazolium salts that yield osmiophilic, lipophobic formazans for ultrastructural localization of dehydrogenase activity.J. Histochem. Cytochem. 20, 685–95.

    CAS  PubMed  Google Scholar 

  • Keilin, D. &Hartree, E. F. (1936) Uricase, and xanthine oxidase.Proc. Roy. Soc. 119, 114–40.

    Google Scholar 

  • Keilin, J. (1959) The biological significance of uric acid and guanine excretion.Biol Revs. Cambridge Phil. Soc. 34, 265–96.

    CAS  Google Scholar 

  • Keller, G. A., Gould, S. J., De Luca, M. &Subramani, S. (1987) Firefly luciferase is targetted to peroxisomes in mammalian cells.Proc. Natl. Acad. Sci. USA 84, 3264–8.

    CAS  PubMed  Google Scholar 

  • Keller, G. A., Warner, T. G., Steimer, K. S. &Hallewell, R. A. (1991). Cu, Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells.Proc. Natl. Acad. Sci. USA. 88, 7381–5.

    CAS  PubMed  Google Scholar 

  • Kilby, B. A. &Neville, E. (1957) Amino acid metabolism in locust tissue.J. Exp. Biol. 34, 276–89.

    CAS  Google Scholar 

  • King, B. F. (1982) Morphologic and cytochemical identification of microperoxisomes in human and non-human primate placental trophoblast.Histochemistry 74 115–21.

    Article  CAS  PubMed  Google Scholar 

  • Konno, R., Uchyama, S. &Yasumura, Y. (1982) Intraspecies and interspecies variations in the substrate specificity ofd-amino acid oxidase.Comp. Biochem. Physiol. 71B, 735–8.

    CAS  Google Scholar 

  • Kooij, A. (1994) A re-evaluation of the tissue distribution and physiology of xanthine oxidoreductase.Histochem. J. 26, 889–915.

    Article  CAS  PubMed  Google Scholar 

  • Kooij, A., Frederiks, W. M., Gossrau, R., &Van Noorden, C. J. F. (1991) Localization of xanthine oxidoreductase activity using the tissue protectant polyvinyl alcohol and final electron acceptor tetranitro BT.J. Histochem. Cytochem. 39, 87–93.

    CAS  PubMed  Google Scholar 

  • Kramar, R., Goldenberg, H., Böck, P. &Klobucar, N. (1974) Peroxisomes in the liver of carp (Cyprinus carpio, L.). Electron microscopic cytochemical and biochemical studies.Histochemistry 40, 137–45.

    Article  CAS  PubMed  Google Scholar 

  • Krebs, H. A. (1935) Metabolism of amino-acids; deamination of amino-acids.Biochem. J. 29, 1620–44.

    CAS  Google Scholar 

  • Kubo, H., Yamano, T., Iwatsubo, H., Watari, H., Shiga, T. &Isomoto, A. (1960) Crystallization and purification of thed-amino acid oxidase.Bull. Soc. Chim. Biol. 42, 569–82.

    CAS  PubMed  Google Scholar 

  • Kurosaki, M., LiCalzi, M., Scanziani, E., Garattini, E. &Terao, M. (1995). Tissue-and cellspecific expression of mouse xanthine oxidoreductase genein vivo: regulation by bacterial lipopolysaccharide.Biochem. J. 306, 225–34.

    CAS  PubMed  Google Scholar 

  • Lamond, S. & Wallace, H. M. (1994) Polyamine oxidase activity and growth in human cancer cells.Biochem. Soc. Trans. 22, 396S.

    Google Scholar 

  • Lata, G. F., Mamrak, F., Bloch, P. &Baker, B. (1977) An electron microscopic and enzymic study of rat liver peroxisomal nucleoid core and its association with urate oxidase.J. Supramol. Struct. 7, 419–34.

    Article  CAS  PubMed  Google Scholar 

  • Lazarow, P. B. &De Duve, C. (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes, enhancement by clofibrate, a hypolipidemic drug.Proc. Natl. Acad. Sci. USA 73, 2043–6.

    CAS  PubMed  Google Scholar 

  • Lazarow, P. B. &Fujiki, Y. (1985) Biogenesis of peroxisomes.Ann. Rev. Cell Biol. 1, 489–530.

    CAS  PubMed  Google Scholar 

  • Lazarow, P. B. &Moser, H. W. (1989) Disorders of peroxisomal biogenesis InThe Metabolic Basis of Inherited Disease. 6th edn. (edited by C. R. Scriver, A. L. Beaudet, W. S. Sly & D. Valle) pp. 1479–509. New York: McGraw-Hill.

    Google Scholar 

  • Lehir, M., Herzog, V. &Fahimi, H. D. (1979) Cytochemical detection of catalase with 3,3-diaminobenzidine. A quantitative reinvestigation of the optimal conditions.Histochemistry 64, 51–66.

    Article  CAS  PubMed  Google Scholar 

  • Leighton, F., Poole, B., Beaufay, H., Baudhuin, P., Coffey, J. W., Fowler, S. &De Duve, C. (1968) The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with Triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions.J. Cell Biol. 37, 482–513.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, P. R. &Knight, D. P. (1992) Cytochemical staining methods for electron microscopy. InPractical Methods in Electron Microscopy. Vol. 14 (edited by A. M. Glauert) Amsterdam: Elsevier.

    Google Scholar 

  • Lindauer, M., Beier, K., Völkl, A. &Fahimi, H. D. (1994) Zonal heterogeneity of peroxisomal enzymes in rat liver: differential induction by three divergent hypolipidemic drugs.Hepatology 20, 475–86.

    Article  CAS  PubMed  Google Scholar 

  • Litwin, J. A. (1984) Peroxidase-positive endothelial cells in rat liver.Cell Tissue Res. 238, 635–42.

    Article  CAS  PubMed  Google Scholar 

  • Litwin, J. A., Völkl, A., Müller-Höcker, J., Hashimoto, T. &Fahimi, H. D. (1987) Immunohistochemical localization of peroxisomal enzymes in human liver biopsies.Am. J. Pathol. 128, 141–50.

    CAS  PubMed  Google Scholar 

  • Litwin, J. A., Völkl, A., Stachura, J. &Fahimi, H. D. (1988) Detection of peroxisomes in human liver and kidney fixed with formalin and embedded in paraffin: the use of catalase and lipid β-oxidation enzymes as immunocytochemical markers.Histochem. J. 20, 165–73.

    Article  CAS  PubMed  Google Scholar 

  • Lojda, Z., Gossrau, R. &Schiebler, T. H. (1979).Enzyme Histochemistry. Berlin: Springer-Verlag.

    Google Scholar 

  • Mahler, H. R. (1963) Uricase. InThe Enzymes. Vol. 8, 2nd edn (edited by P. D. Boyer) pp. 285–96. New York: Academic Press.

    Google Scholar 

  • Mahler, H. R., Hübscher, G. &Baum, H. (1955) Studies on uricase. I. Preparation, purification, and properties of a cuproprotein.J. Biol. Chem. 216, 625–41.

    CAS  PubMed  Google Scholar 

  • Mannaerts, G. P., Van Veldhoven, P., Van Broekhoven, A., Vandebroek, G. &Debeer, L. J. (1982) Evidence that peroxisomal acyl-CoA synthetase is located at the cytoplasmic side of the peroxisomal membrane.Biochem. J. 204, 17–23.

    CAS  PubMed  Google Scholar 

  • Marklund, S. L. (1980) Distribution of CuZn superoxide dismutase and Mn superoxide dismutase, in human tissues and extracellular fluids.Acta Physiol. Scand., (Suppl)492, 19–23.

    CAS  Google Scholar 

  • Marklund, S. L. (1984) Extracellular superoxide dismutase in human tissues and human cell lines.J. Clin. Invest. 74, 1398–403.

    CAS  PubMed  Google Scholar 

  • Marklund, S. L. (1990) Expression of extracellular superoxide dismutase by human cell lines.Biochem. J. 266, 213–19.

    CAS  PubMed  Google Scholar 

  • Marklund, S. L., Westman, N. G., Lundgren, E. &Roos, G. (1982) Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues.Cancer Res. 42, 1955–61.

    CAS  PubMed  Google Scholar 

  • Marotto, M. E., Thurman, R. G. &Lemasters, J. J. (1988) Early midzonal cell death during low-flow hypoxia in the isolated, perfused rat liver: protection by allopurinol.Hepatology 8, 585–90.

    CAS  PubMed  Google Scholar 

  • Masters, E. M. (1972) Monamine oxidase activity in cultured brown fat cell.Exp. Cell Res. 71, 372–6.

    Article  CAS  PubMed  Google Scholar 

  • Masters, C., &Holmes, R. (1977) Peroxisomes: new aspects of cell physiology and biochemistry.Physiol. Rev. 57, 816–82.

    CAS  PubMed  Google Scholar 

  • Mathier, I. H., Bruder, G., Jarasch, E.-D., Heid, H. W. &Johnson, V. G. (1984) Protein synthesis in lactating guinea-pig mammary tissue perfused in vitro. II. Biogenesis of milk-fatglobule membrane proteins.Exp. Cell. Res. 151, 277–82.

    Google Scholar 

  • Matsui, I., Wiegand, L. &Pegg, A. E. (1981) Properties of spermidineN-acetyltransferase from livers of rats treated with carbon tetrachloride and its role in the conversion of spermidine into putrescine.J. Biol. Chem. 256, 2454–9.

    CAS  PubMed  Google Scholar 

  • McGroarty, E., Hsieh, B., Wied, D. M., Gee, R. &Tolbert, N. E. (1974) Alpha-hydroxy acid oxidation by peroxisomes.Arch. Biochem. Biophys. 161, 194–210.

    Article  CAS  Google Scholar 

  • McMillan, P. J. (1967) Differential demonstration of muscle and heart type lactic dehydrogenase of rat muscle and kidney.J. Histochem. Cytochem. 15, 21–31.

    CAS  Google Scholar 

  • Meijer, A. E. F. H. (1972) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections.Histochemie 30, 31–9.

    Article  CAS  PubMed  Google Scholar 

  • Middelkoop, E., Wiemer, E. A. C., Schoenmaker, D. E. T., Strijland, A. &Tager, J. M. (1993) Topology of catalase assembly in human skin fibroblasts.Biochim. Biophys. Acta 1220, 15–20.

    CAS  PubMed  Google Scholar 

  • Mihalik, S. J. &Rhead, W. J. (1989)l-pipecolic acid oxidation in rabbit and cynomolgus monkey.J. Biol. Chem. 264, 2509–17.

    CAS  PubMed  Google Scholar 

  • Morgan, D. M. L. (1985). Polyamine oxidases.Biochem. Soc. Trans. 13, 322–5.

    CAS  PubMed  Google Scholar 

  • Nakamura, S., Arimura, K., Ogawa, K. &Yagi, T. (1980) Use of 1-methoxy-5-methylphenazinium methyl sulfate (1-methoxyPMS) in the assay of some enzymes of diagnostic importance.Clin. Chim. Acta 101, 321.

    CAS  PubMed  Google Scholar 

  • Nakos, G. &Gossrau, R. (1994) Light microscopic visualization of diamine oxidase using a cerium method.Eur. J. Histochem. 38, 13–22.

    CAS  PubMed  Google Scholar 

  • Noguchi, T., Takada, Y. &Fujiwara, S. (1979) Degradation of uric acid to urea and glyoxylate in peroxisomes.J. Biol. Chem. 254, 5272–5.

    CAS  PubMed  Google Scholar 

  • Novikoff, A. B. &Goldfischer, S. (1969) Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine.J. Histochem. Cytochem. 17, 675–80.

    CAS  PubMed  Google Scholar 

  • Novikoff, P. M. &Novikoff, A. B. (1972) Peroxisomes in absorptive cells of mammalian small intestine.J. Cell Biol. 53, 532–60.

    Article  CAS  PubMed  Google Scholar 

  • Novikoff, A. B., Novikoff, P. M., Davis, C. &Quintana, N. (1972) Studies on microperoxisomes. II. A cytochemical method for light and electron microscopy.J. Histochem. Cytochem. 20, 1006–23.

    CAS  PubMed  Google Scholar 

  • Oikawa, I. &Novikoff, P. M. (1995) Catalase-negative peroxisomes: transient appearance in rat hepatocytes during liver regeneration after partial hepatectomy.Am. J. Pathol. 146, 673–87.

    CAS  PubMed  Google Scholar 

  • Osmundsen, H. (1982) Peroxisomal β-oxidation of long fatty acids: effects of high fat diets.Ann. N.Y.Acad. Sci. 386, 13–29.

    CAS  PubMed  Google Scholar 

  • Östlund Farrants, A. K., Björkhem, I. &Pedersen, J. I. (1990) Differential induction of peroxisomal oxidation of palmitic acid and 3α, 7α, 12α-trihydroxy-5β-cholestanoic acid in rat liver.Biochim. Biophys. Acta 1046, 173–7.

    PubMed  Google Scholar 

  • Osumi, T. &Hashimoto, T. (1978) Acyl-CoA oxidase of rat liver: a new enzyme for fatty acid oxidation.Biochem. Biophys. Res. Commun. 83, 479–85.

    Article  CAS  PubMed  Google Scholar 

  • Patel, H. R. H., Frederiks, W. M., Marx, F., Best, A. J. &Van Noorden, C. J. F. (1991) A quantitative histochemical study ofd-amino acid oxidase activity in rat liver in relationship with feeding conditions.J. Histochem. Cytochem. 39, 81–6.

    CAS  PubMed  Google Scholar 

  • Peden, D. B., Hohman, R., Brown, M. E., Mason, R. T., Berkebile, C., Fales, H. M. &Kaliner, M. A. (1990) Uric acid is a major antioxidant in human nasal airway secretions.Proc. Natl. Acad. Sci. USA 87, 7638–43.

    CAS  PubMed  Google Scholar 

  • Pegg, A. E. (1986) Recent advances in the biochemistry of polyamines in eukaryotes.Biochem. J. 234, 249–62.

    CAS  PubMed  Google Scholar 

  • Pegg, A. E. &Mccann, P. P. (1982) Polyamine metabolism and function.Am. J. Physiol. 243, C212–21.

    CAS  PubMed  Google Scholar 

  • Pegg, A. E., Matsui, I., Seely, J. E., Pritchard, M. L. &Pösö, H. (1981) Formation of putrescine in rat liver.Med. Biol. 59, 327–33.

    CAS  PubMed  Google Scholar 

  • Perotti, M. E., Gavazzi, E., Trussardo, L., Malgretti, N. &Curti, B. (1987) Immunoelectron microscopic localization ofd-amino acid oxidase in rat kidney and liver.Histochem. J. 19, 157–69.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, J. K. &Mannaerts, G. P. (1994) Peroxisomal lipid metabolism.Ann. Rev. Nutr. 14, 343–70.

    CAS  Google Scholar 

  • Ritter, J., Wenk, H. &Gerth, C. (1971) Quantitative Untersuchungen zum Diffusionsproblem enzymatisch reduzierter Pyridinnucleotide; ein Beitrag zum histochemischer Nachweis Pyridinnucleotid-abhängigen Dehydrogenasen.Acta Histochem. 40, 51–63.

    CAS  PubMed  Google Scholar 

  • Robinson, J. C., Keay, L., Molinari, R. &Sizer, J. W. (1962)l-α-hydroxy acid oxidase of hog renal cortex.J. Biol. Chem. 237, 2001–10.

    CAS  PubMed  Google Scholar 

  • Robinson, J. M. &Badwey, J. A. (1995) The NADPH oxidase complex of phagocytic leukocytes, a biochemical and cytochemical view.Histochemistry 103, 163–80.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, J. M., Karnovsky, M. J., Stoward, P. J. &Lewis, P. R. (1991) Oxidases. InHistochemistry. Theoretical and applied. Vol 3. Enzyme Histochemistry (edited by P. J. Stoward & A. G. E. Pearse) pp. 95–122. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Robinson, J. M., Briggs, R. T. &Karnovsky, M. J. (1978) Localization ofd-amino acid oxidase on the cell surface of human polymorphonuclear leukocytes.J. Cell Biol. 77, 59–71.

    Article  CAS  PubMed  Google Scholar 

  • Roels, F. (1976) Cytochemical demonstration of extraperoxisomal catalase. I. Sheep liver.J. Histochem. Cytochem. 24, 713–24.

    CAS  PubMed  Google Scholar 

  • Roels, F. (1991)Peroxisomes. A Personal Account. pp. 1–144. Brussels: VUB-Press.

    Google Scholar 

  • Roels, F. &Cornelis, A. (1989) Heterogeneity of catalase staining in human hepatocellular peroxisomes.J. Histochem. Cytochem. 37, 331–7.

    CAS  PubMed  Google Scholar 

  • Roels, F. &Goldfischer, S. (1979) Cytochemistry of human catalase. The demonstration of hepatic and renal peroxisomes by a high temperature procedure.J. Histochem. Cytochem. 27, 1471–7.

    CAS  PubMed  Google Scholar 

  • Roels, F., Wisse, E., Deprest, B. &Van Der Meulen, J. (1975) Cytochemical discrimination between catalases and peroxidases using diaminobenzidine.Histochemistry 41, 281–312.

    Article  CAS  PubMed  Google Scholar 

  • Roels, F., De Coster, W. &Goldfischer, S. (1977) Cytochemical demonstration of extraperoxisomal catalase. II. Liver rhesus monkey and guinea pig.J. Histochem. Cytochem. 25, 157–60.

    CAS  PubMed  Google Scholar 

  • Roels, F., Pauwels, M., Cornelis, A., Kerckaert, I., Van Der Spek, P., Goovaerts, G., Versieck, J. &Goldfischer, S. (1983) Peroxisomes microbodies) in human liver: cytochemical and quantitative studies of 85 biopsies.J. Histochem. Cytochem. 31, 235–7.

    CAS  PubMed  Google Scholar 

  • Roels, F., Verdonck, V., Pauwels, M., De Catte, L., Lissens, W., Liebaers, I. &Elleder, M. (1987) Light microscopic visualization of peroxisomes and plasmalogens in first trimester chorionic villi.Prenat. Diagn. 7, 525–30.

    CAS  PubMed  Google Scholar 

  • Roels, F., Espeel, M. &De Craemer, D. (1991a) Liver pathology and immunocytochemistry in congenital peroxisomal disease: a review.J. Inher. Metab. Dis. 14, 853–75.

    CAS  PubMed  Google Scholar 

  • Roels, F., Espeel, M., Pauwels, M., De Craemer, D., Egberts, H. J. A. &Van Der Spek, P. (1991b) Different types of peroxisomes in human duodenal epithelium.Gut 32, 858–65.

    CAS  PubMed  Google Scholar 

  • Roels, F., Espeel, M., Poggi, F., Mandel, H., Van Maldergem, L. &Saudubray, J. M. (1993) Human liver pathology in peroxisomal disease: a review including novel data.Biochimie 75, 281–92.

    Article  CAS  PubMed  Google Scholar 

  • Roggenkamp, R. (1992) Targetting signals for protein import into peroxisomes.Cell Biochem. Funct. 10, 193–9.

    Article  CAS  PubMed  Google Scholar 

  • Saga, M., Tsutsumi, Y. &Nakano, M. (1969) Localization of short and long chainl-alpha-hydroxy acid oxidases in peroxisomes of hog kidney.Biochim. Biophys. Acta 184, 213–15.

    CAS  PubMed  Google Scholar 

  • Santos, M. J., Ojeda, J. M., Garrido, J. &Leighton, F. (1985) Peroxisomal organization in normal and cerebrohepatorenal (Zellweger) syndrome fibroblasts.Proc. Natl. Acad. Sci. USA. 82, 6556–60.

    CAS  PubMed  Google Scholar 

  • Santos, M. J., Imakana, T., Shio, H., Small, G. M. &Lazarow, P. B. (1988a) Peroxisomal membrane ghosts in Zellweger syndrome. Aberrant organelle assemblyScience 239, 1536–8.

    CAS  PubMed  Google Scholar 

  • Santos, M. J., Imakana, T., Shio, H. &Lazarow, P. B. (1988b) Peroxisomal integral membrane proteins in control and Zellweger fibroblasts.J. Biol. Chem. 263, 10502–9.

    CAS  PubMed  Google Scholar 

  • Schellens, J. P. M., Frederiks, W. M., Van Noorden, C. J. F., Vreeling-Sindelárová, H., Marx, F. &McMillan, P. J. (1992) The use of unfixed cryostat sections for electron microscopic study ofd-amino acid oxidase activity in rat liver.J. Histochem. Cytochem. 40, 1975–9.

    CAS  PubMed  Google Scholar 

  • Schellens, J. P. M., Vreeling-Sindelárová, H., Van Den Munckhof, R. J. M. &Frederiks, W. M. (1995) Electron microscopic study of a cytosolic enzyme in unfixed cryostat sections: demonstration of glycogen phosphorylase activity in rat liver and heart tissue.Histochem. J. 27, 609–14.

    Article  CAS  PubMed  Google Scholar 

  • Schnaitman, C., Erwin, V. G. &Greenawalt, J. W. (1967) The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria.J. Cell Biol. 32, 719–35.

    Article  CAS  PubMed  Google Scholar 

  • Schrader, M., Baumgart, E., Völkl, A. &Fahimi, H. D. (1994) Heterogeneity of peroxisomes in human hepatoblastoma cell line HepG2. Evidence of distinct subpopulations.Eur. J. Cell Biol. 64, 281–94.

    CAS  PubMed  Google Scholar 

  • Schram, A. W., Strijland, A., Hashimoto, T., Wanders, R. J. A., Schutgens, R. B. H., Van Den Bosch, H. &Tager, J. M. (1986) Biosynthesis and maturation of peroxisomal β-oxidation enzymes in fibroblasts in relation to the Zellweger syndrome and infantile Refsum disease.Proc. Natl. Acad. Sci. USA 83, 6156–8.

    CAS  PubMed  Google Scholar 

  • Schultz, H. (1991) Beta oxidation of fatty acids.Biochim. Biophys. Acta 1081, 109–20.

    Google Scholar 

  • Seidler, E. (1980) New nitro-monotetrazolium salts and their use in histochemistry.Histochem. J.,12, 619–30.

    Article  CAS  PubMed  Google Scholar 

  • Seidler, E. (1991). The tetrazolium-formazan system: design and histochemistry.Prog. Histochem. Cytochem. 24(1), 1–86.

    CAS  PubMed  Google Scholar 

  • Seiler, N. (1990) Polyamine metabolism.Digestion 46 (Suppl. 2.), 319–30.

    CAS  PubMed  Google Scholar 

  • Seligman, A. M., Ueno, H., Morizono, Y., Wasserkrug, H. L., Katzoff, L. &Hanker, J. S. (1967) Electron microscopic demonstration of dehydrogenase activity with a new osmiophilic ditetrazolium salt (TC-NBT).J. Histochem. Cytochem. 15, 1–13.

    CAS  PubMed  Google Scholar 

  • Severin, E. &Seidler, E. (1992) Calibration of a flow cytometric assay of glucose-6-phosphate dehydrogenase activity.Cytometry 13, 322–6.

    Article  CAS  PubMed  Google Scholar 

  • Shannon, W. A., Wasserkrug, H. L. &Seligman, A. M. (1974) The ultrastructural localization of monoamine oxidase (MAO) with tryptamine and a new tetrazolium salt, 2-(2′-benzothioazoly)-5-styryl-3-(4′-phtalhydrazidyl)tetrazolium chloride (BSPT).J. Histochem. Cytochem. 22, 170–82.

    CAS  PubMed  Google Scholar 

  • Shio, H. &Lazarow, P. B. (1981) Relationships between peroxisomes and endoplasmic reticulum investigated by combined catalase and glucose-6-phosphatase cytochemistry.J. Histochem. Cytochem. 29, 1263–72.

    CAS  PubMed  Google Scholar 

  • Shnitka, T. K. (1966) Comparative ultrastructure of hepatic microbodies in some animals and birds in relation to species differences in uricase activity.J. Ultrastruct. Res. 16, 598–625.

    CAS  PubMed  Google Scholar 

  • Shnitka, T. K. &Talibi, G. G. (1971) Cytochemical localization by ferricyanide reduction of α-hydroxy acid oxidase activity in peroxisomes of rat kidney.Histochemie 27, 137–58.

    Article  CAS  PubMed  Google Scholar 

  • Singh, I., Dhaunsi, G. S., Orak, J. K., Rajagopalan, P. R. &Singh, A. K. (1994) CuZn superoxide dismutase: intraorganellar distribution in peroxisomes.Ann. N. Y. Acad. Sci. 723, 406–8.

    CAS  PubMed  Google Scholar 

  • Skorczynski, S. S. &Hamilton, G. A. (1986) Oxalyl thiolesters andN-oxalylcysteine are normal mammalian metabolites.Biochem. Biophys. Res. Commun. 141, 1051–7.

    Article  CAS  PubMed  Google Scholar 

  • Stefanini, S., Farrace, M. G. &Ceru'Argento, M. P. (1985) Differentiation of liver peroxisomes in the foetal and newborn rat. Cytochemistry of catalase andd-amino acid oxidase.J. Embryol. Exp. Morph. 88, 151–63.

    CAS  PubMed  Google Scholar 

  • Stefanini, S., Serafini, B., Cimini, A., &Sartori, C. (1994) Differentiation of kidney cortex peroxisomes in fetal and newborn rats.Biol. Cell 80, 185–93.

    Google Scholar 

  • Stellmach, J. &Severin, F. (1987) A fluorescent redox dye. Influence of several substrates and electron carriers on the tetrazolium salt-formazan reaction of Ehrlich ascites tumour cells.Histochem. J. 19, 21–6.

    Article  CAS  PubMed  Google Scholar 

  • Stoward, P. J., Altman, F. P. &Seidler, E. (1991a) Principles of oxidoreductase histochemistry. InHistochemistry. Theoretical and Applied. Vol 3. Enzyme Histochemistry (edited by P. J. Stoward & A. G. E. Pearse) pp. 1–25. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Stoward, P. J., Meijer, A. E. F. H., Seidler, E. &Wohlrab, F. (1991b) Dehydrogenases. InHistochemistry. Theoretical and Applied. Vol. 3. Enzyme Histochemistry (edited by P. J. Stoward & A. G. E. Pearse) pp. 27–71. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Suzuki, Y., Shimozawa, N., Kawabata, I., Yajima, S., Inoue, K., Uchida, Y., Izai, K., Tomatsu, S., Kondo, N. &Orii, T. (1994) Prenatal diagnosis of peroxisomal disorders. Biochemical and immunocytochemical studies on peroxisomes in human amniocytes.Brain Dev. 16, 27–31.

    Article  CAS  PubMed  Google Scholar 

  • Swinkels, B. W., Gould, S. J., Bodnar, A. G., Rachubinski, R. A. &Subramani, S. (1991) A novel, cleavable peroxisomal targetting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase.EMBO J. 10, 3255–62.

    CAS  PubMed  Google Scholar 

  • Tabib, A. &Bachrach, U. (1994) Activation of the proto-oncogene c-myc and c-fos by c-ras: involvement of polyamines.Biochem. Biophys. Res. Comm. 202, 720–7.

    Article  CAS  PubMed  Google Scholar 

  • Tabor, C. W. &Tabor, H. (1984) Polyamines.Ann. Rev. Biochem. 53, 749–90.

    CAS  PubMed  Google Scholar 

  • Takada, Y. &Noguchi, T. (1986) Ureidoglycollate lyase, a new metalloenzyme of peroxisomal urate in marine fish liver.Biochem. J. 235, 391–7.

    CAS  PubMed  Google Scholar 

  • Thomas, J. &Trelease, R. N. (1981) Cytochemical localization of glycolate oxidase in microbodies (glyoxisomes and peroxisomes) of higher plant tissue using the CeCl3-technique.Protplasma 108, 39–53.

    CAS  Google Scholar 

  • Tsukada, H., Koyama, S., Gotoh, M. &Tadano, H. (1971) Fine structure of crystalloid nucleoids of compact type in hepatocyte microbodies of guinea pigs, cats, and rabbits.J. Ultrastruct. Res. 36, 159–75.

    Article  CAS  PubMed  Google Scholar 

  • Tsukada, H., Mochizuki, Y. &Fujiwara, S. (1966) The nucleoids of rat liver cell microbodies.J. Cell Biol. 28, 449–60.

    Article  CAS  PubMed  Google Scholar 

  • Uchida, E. &Koelle, G. B. (1984) Histochemical investigation of criteria for the distinction between monoamine oxidase A and B in various species.J. Histochem. Cytochem. 32, 667–73.

    CAS  PubMed  Google Scholar 

  • Usuda, N., Yokota, S., Hashimoto, T. &Nagata, T. (1986) Immunocytochemical localization ofd-amino acid oxidase in the central clear matrix of rat kidney peroxisomes.J. Histochem. Cytochem. 34, 1709–18.

    CAS  PubMed  Google Scholar 

  • Usuda, N., Reddy, M. K., Hashimoto, T., Rao, M. S. &Reddy, J. K. (1988a) Tissue specificity and species differences in the distribution of urate oxidase in peroxisomes.Lab. Invest. 58, 100–11.

    CAS  PubMed  Google Scholar 

  • Usuda, N., Usman, M. I., Reddy, M. K., Hashimoto, T., Reddy, J. K. &Rao, M. S. (1988b) Immunocytochemical localization of urate oxidase, fatty acyl-CoA oxidase, and catalase in bovine kidney peroxisomes.J. Histochem. Cytochem. 36, 253–8.

    CAS  PubMed  Google Scholar 

  • Usuda, N., Yokota, S., Ichikawa, R., Hashimoto T. &Nagata, T. (1991) Immunoelectron microscopic study of a newd-amino acid oxidase-immunoreactive subcompartment in rat liver peroxisomes.J. Histochem. Cytochem. 39, 95–102.

    CAS  PubMed  Google Scholar 

  • Usuda, N., Hayashi, S., Fujiwara, S., Noguchi, T., Nagata, T., Rao, M. S., Alvares, K., Reddy, J. K. &Yeldani, A. V. (1994) Uric acid degradating enzymes, urate oxidase and allantoinase, are associated with different subcellular organelles in frog liver and kidney.J. Cell Sci. 107, 1073–81.

    CAS  PubMed  Google Scholar 

  • Van den Bosch, H., Schutgens, R. B. H., Wanders, R. J. A. &Tager, J. M. (1992) Biochemistry of peroxisomes.Ann. Rev. Biochem. 61, 157–97.

    PubMed  Google Scholar 

  • Van den Branden, C., Vamecq, J., Wybo, I. &Roels, F. (1986) Phytol and peroxisome proliferation.Pediatr. res. 20, 411–15.

    PubMed  Google Scholar 

  • Van den Munckhof, R. J. M., Vreeling-Sindelárová, H., Schellens, J. P. M. &Frederiks, W. M. (1992) Ultrastructural localization of xanthine oxidase activity in unfixed cryostat section of rat duodenum.Histochem. J. 24, 489.

    Google Scholar 

  • Van den Munckhof, R. J. M., Vreeling-Sindelárová, H., Schellens, J. P. M. &Frederiks, W. M. (1993) Localization of oxidase activities in unfixed cryostat sections of rat liver and duodenum using a semipermeable membrane.Histochem. J. 25, 591.

    Google Scholar 

  • Van den Munckhof, R. J. M., Vreeling-Sindelárová, H., Schellens, J. P. M. &Frederiks, W. M. (1994) Localization of uric acid oxidase activity in core and matrix of peroxisomes as detected in unfixed cryostat sections of rat liver.J. Histochem. Cytochem. 42, 177–83.

    PubMed  Google Scholar 

  • Van den Munckhof, R. J. M., Denyn, M., Verhofstad, A. A. J., Schipper, R. G., Van Noorden, C. J. F. &Frederiks, W. M. (1995a) Substrate specificity and ultrastructural localization of polyamine oxidase activity in unfixed rat tissues.J. Histochem. Cytochem. 43, 1155–62.

    PubMed  Google Scholar 

  • Van den Munckhof, R. J. M., Vreeling-Sindelárová, H., Schellens, J. P. M., Van Noorden, C. J. F. &Frederiks, W. M. (1995b) Ultrastructural localization of xanthine oxidase activity in the digestive tract of the rat.Histochem. J.,27, 897–905.

    Article  Google Scholar 

  • Van Dijken J. P., Veenhuis, M., Vermeulen, C. A. &Harder, W. (1975) Cytochemical localization of catalase activity in methanol-grown Hansenula polymorph.Arch. Microbiol. 105, 261–7.

    Article  PubMed  Google Scholar 

  • Vanhove, G. F., Van Veldhoven, P. P., Fransen, M., Denis, S., Eyssen, H. J., Wanders, R. J. A. &Mannaerts, G. P. (1993) The CoA esters of 2-methyl-branched chain fatty acids and of the bile acid intermediates di-and trihydroxycoprostanic acid are oxidized by one single peroxisomal branched chain acyl-CoA oxidase in human liver and kidney.J. Biol. Chem. 268, 10335–44.

    CAS  PubMed  Google Scholar 

  • Van Noorden, C. J. F. (1984) Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase.Prog. Histochem. Cytochem. 15(4), 1–82.

    PubMed  Google Scholar 

  • Van Noorden, C. J. F. &Frederiks, W. M. (1992)Enzyme Histochemistry. A Laboratory Manual of Current Methods. Oxford: Oxford University Press.

    Google Scholar 

  • Van Noorden, C. J. F. &Frederiks, W. M. (1993) Cerium methods for light and electron microscopical histochemistry.J. Microsc. 171, 3–16.

    PubMed  Google Scholar 

  • Van Noorden, C. J. F. &Tas, J. (1982a) The role of exogenous electron carriers in NAD(P)-dependent dehydrogenase cytochemistry studied in vitro and with a model system of polyacrylamide films.J. Histochem. Cytochem. 30, 12–20.

    PubMed  Google Scholar 

  • Van Noorden, C. J. F. &Tas, J. (1982b) Advantages of 1-methoxy PMS as an electron carrier in dehydrogenase cytochemistry.Histochem. J. 14, 837–42.

    Article  PubMed  Google Scholar 

  • Van Noorden, C. J. F. &Vogels, I. M. C. (1989) Polyvinyl alcohol and other tissue protectants in enzyme histochemistry: a consumer's guide.Histochem. J. 21, 373–9.

    PubMed  Google Scholar 

  • Van Roermund, C. W. T., Brul, S., Tager, J. M., Schutgens, R. B. H. &Wanders, R. J. A. (1991) Acyl-CoA oxidase, peroxisomal thiolase and dihydroxyacetone phosphate acyltransferase: aberrant subcellular localization in Zellweger syndrome.J. Inher. Metab. Dis. 14, 152–64.

    PubMed  Google Scholar 

  • Van Veldhoven, P. P., Brees, C. &Mannaerts, G. P. (1991)d-aspartate oxidase, a peroxisomal enzyme in liver of rat and man.Biochim. Biophys. Acta 1073, 203–8.

    PubMed  Google Scholar 

  • Vaughn, K. C., Duke, S. O., Duke, S. M. &Henson, C. A. (1982) Ultrastructural localization of urate oxidase in nodules ofSesbania exaltata, Glycine max, andMedicago sativa.Histochemistry 74, 309–18.

    Article  CAS  PubMed  Google Scholar 

  • Veenhuis, M. &Wendelaar Bonga, S. E. (1977) The cytochemical demonstration of catalase andd-amino acid oxidase in the microbodies of teleost kidney cells.Histochem. J. 9, 171–81.

    Article  CAS  PubMed  Google Scholar 

  • Veenhuis, M. &Wendelaar Bonga, S. E. (1979) Cytochemical localization of catalase and several hydrogen peroxideproducing oxidases in the nucleoids and matrix of rat liver peroxisomes.Histochem. J. 11, 561–72.

    Article  CAS  PubMed  Google Scholar 

  • Veenhuis, M., Van Dijken, J. P. &Harder, W. (1976) Cytochemical studies on the localization of methanol oxidase and other oxidases in peroxisomes of methanol-grownHansenula polymorpha.Arch. Microbiol. 111, 123–35.

    Article  CAS  PubMed  Google Scholar 

  • Völkl, A., Baumgart, E. &Fahimi, H. D. (1988) Localization of urate oxidase in the crystalline cores of rat liver peroxisomes by immunocytochemistry and immunoblotting.J. Histochem. Cytochem. 36, 329–36.

    PubMed  Google Scholar 

  • Wakayama, Y. (1989) Peroxisomes in regenerating human skeletal muscle.Acta Anat. 136, 121–4.

    CAS  PubMed  Google Scholar 

  • Walker, D. G. &Seligman, A. M. (1961) Formalin fixation in the cytochemical demonstration of succinic dehydrogenase of mitochondria.J. Biophys. Biochem. Cytol. 9, 415–27.

    CAS  PubMed  Google Scholar 

  • Wallace, H. M. &Keir, H. M. (1981) Uptake and excretion of polyamines from baby hamster kidney cells (BHK-21/C13). The effect of serum on confluent cell lines.Biochim. Biophys. Acta 676, 25–30.

    CAS  PubMed  Google Scholar 

  • Walton, P. A., Gould, S. J., Faremisco, J. R. &Subramani, S. (1992) Transport of microinjected proteins into peroxisomes of mammalian cells: inability of Zellweger cell lines to import proteins with the SKL tripeptide peroxisomal targetting signal.Mol. Cell. Biol. 12, 531–41.

    CAS  PubMed  Google Scholar 

  • Wanders, R. J. A. &Denis, S. (1992) Identification of superoxide dismutase in rat liver peroxisomes.Biochim. Biophys. Acta 1115, 259–62.

    CAS  PubMed  Google Scholar 

  • Wanders, R. J. A., Kos, M., Roest, B., Meijer, A. J., Schrakamp, G., Heymans, H. S. A., Tegelaers, W. H. H., Van den Bosch, H., Schutgens, R. B. H. &Tager, J. M. (1984) Activity of peroxisomal enzymes and intracellular distribution of catalase in Zellweger syndrome.Biochem. Biophys. Res. Commun. 123, 1054–61.

    Article  CAS  PubMed  Google Scholar 

  • Wanders, R. J. A., Van Roemund, C. W. T., Westra, R., Schutgens, R. B. H., Van de Ende, M. A., Tager, J. M., Monnens, L. H. A., Baadenhuysen, L., Govaerts, L., Przyrembel, H., Wolff, E. D., Blom, W., Huymans, J. G. M. &Laerhoven, F. G. M. (1987) Alanine glyoxylate aminotransferase and the urinary excretion of oxalate and glycollate in hyperoxaluria type I and the Zellweger syndrome.Clin. Chim. Acta 165, 311–19.

    CAS  PubMed  Google Scholar 

  • Wanders, R. J. A., Romeyn, G. J., Schutgens, R. B. H. &Tager, J. M. (1989)l-pipecolate oxidase: a distinct peroxisomal enzyme in man.Biochem. Biophys. Res. Commun. 164, 550–5.

    Article  CAS  PubMed  Google Scholar 

  • Weimar, W. R. &Neims, A. H. (1977) Hog cerebellard-amino acid oxidase and its histochemical and immunofluorescent localization.J. Neurochem. 28, 559–72.

    CAS  Google Scholar 

  • Weisiger, R. A. &Fridovich, I. (1973a) Superoxide dismutase. Organelle specificity.J. Biol. Chem. 248, 3582–92.

    CAS  PubMed  Google Scholar 

  • Weisiger, R. A. &Fridovich, I. (1973b) Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localization.J. Biol. Chem. 248, 4793–6.

    CAS  PubMed  Google Scholar 

  • Wiemer, E. A. C., Brul, S., Just, W. W., Van Driel, R., Brouwerkelder, E., Van den Berg, M., Weijers, P. J., Schutgens, R. B. H., Van den Bosch, H., Schram, A., Wanders, R. J. A. &Tager, J. M. (1989) Presence of peroxisomal membrane proteins in liver and fibroblasts from patients with the Zellweger syndrome and related disorders: evidence for the existence of peroxisomal ghosts.Eur. J. Cell Biol.,50, 407–17.

    CAS  PubMed  Google Scholar 

  • Williams, D., Gascoigne, J. E., Street, M. &Williams, E. D. (1979) Histochemical characterization of monoamine oxidase in ependyma of rat hypothalamus.Histochem. J. 11, 83–95.

    CAS  PubMed  Google Scholar 

  • Wohlrab, F. (1965) Über die histochemische Erfassbarkeit der Aminosäure-Dehydrogenases in Säugetierorganen.Histochemie 5, 311–25.

    Article  CAS  PubMed  Google Scholar 

  • Würzinger, K. H. &Hartenstein, R. (1974) Phylogeny and correlations of aldehyde oxidase, xanthine oxidase, xanthine dehydrogenase and peroxidase in animal tissues.Comp. Biochem. Physiol. B49, 171–85.

    PubMed  Google Scholar 

  • Yagi, K. &Ozawa, T. (1964) Flavin content ofd-amino acid oxidase.Biochim. Biophys. Acta 81, 599–601.

    CAS  PubMed  Google Scholar 

  • Yamamoto, K. &Fahimi, H. D. (1987) Biogenesis of peroxisomes in regenerating rat liver. I. Sequential changes of catalase and urate oxidase detected by ultrastructural cytochemistry.Eur. J. Cell Biol. 43, 293–300.

    CAS  PubMed  Google Scholar 

  • Yamamoto, K. &Ogawa, K. (1983) Effects of NaOH-Pipes buffer used in aldehyde fixative on alkaline phosphatase activity in rat hepatocytes.Histochemistry 77, 13–26.

    Article  Google Scholar 

  • Yamamoto, K., Völkl, A. &Fahimi, H. D. (1989) Biogenesis of peroxisomes in regenerating rat liver. II. Immunoelectron microscopical investigation of catalase and acyl-CoA oxidase.Acta Histochem. Cytochem. 22, 443–57.

    CAS  Google Scholar 

  • Yamamoto, K., Völkl, A., Hashimoto, T. &Fahimi, H. D. (1988) Catalase in guinea pig hepatocytes is localized in cytoplasm, nuclear matrix and peroxisomes.Eur. J. Cell Biol. 46, 129–35.

    CAS  PubMed  Google Scholar 

  • Yokota, S. (1973) Studies on mouse liver urate oxidase. I. Immunofluorescent localization of urate oxidase in mouse liver.Histochemie 36, 21–7.

    Article  CAS  PubMed  Google Scholar 

  • Yokota, S. &Fahimi, H. D. (1981) Immunocytochemical localization of catalase in rat liver.J. Histochem. Cytochem. 29, 803–12.

    Google Scholar 

  • Yokota, S. &Nagata, T. (1974) Studies on mouse liver urate oxidase. III. Fine localization of urate oxidase in liver cells revealed by means of ultracryotomy-immunoferritin method.Histochemistry 39, 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Yokota, S. &Nagata, T. (1977) Urate oxidase. InElectron Microscopy of Enzymes. Principles and Methods. Vol. 5 (edited by M. A. Hayat) pp. 72–9. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Yokota, S., Ichikawa, K. &Hashimoto, T. (1985) Light and electron microscopic localization ofl-alpha-hydroxyacid oxidase in rat kidney revealed by immunocytochemical techniques.Histochemistry 82, 25–32.

    CAS  PubMed  Google Scholar 

  • Yokoto, S., Völkl, A., Hashimoto, T. &Fahimi, H. D. (1987) Immunoelectron microscopy of peroxisomal enzymes, their substructural association and compartmentalization in rat kidney peroxisomes. InPeroxisomes in Biology and Medicine (edited by H. D. Fahimi & H. Sies), pp. 115–27. Berlin: Springer Verlag.

    Google Scholar 

  • Zaar, K. (1992) Structure and function of peroxisomes in the mammalian kidney.Eur. J. Cell Biol. 59, 233–54.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van den Munchof, R.J.M. In situ heterogeneity of peroxisomal oxidase activities: An update. Histochem J 28, 401–429 (1996). https://doi.org/10.1007/BF02331433

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02331433

Keywords

Navigation