Skip to main content
Log in

Kinetic derivation of the gas-dynamic equation for multicomponent mixtures of light and heavy particles

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The gas-dynamic equations for multicomponent mixtures of particles with large mass disparity and frozen internal degrees of freedom are derived by means of the methods of the kinetic theory. It is found that the macroscopic description may be one-velocity and two-temperature. A special feature is the need to use a multivelocity solution of the Boltzmann equation for the heavy components and also the method of introducing their effective temperature. The corresponding modification of the generalized Chapman-Enskog method is given. The Stefan-Maxwell relations are shown to be meaningful as local relations for the diffusion velocities of the components in going over from the multivelocity solution of the kinetic equations to the one-velocity macroscopic description. The transport properties, the exchange terms, and the Stefan-Maxwell relations in the system of gas-dynamic equations written in the Navier-Stokes approximation are calculated in an arbitrary approximation in Sonine polynomials. A criticism of the generalized Chapman-Enskog method is considered and the necessary explanations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. I. Nigmatulin,Elements of the Mechanics of Heterogeneous Media [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  2. Yu. L. Klimontovich,Statistical Theory of Nonequilibrium Processes in Plasma [in Russian], Izd. MGU, Moscow (1964).

    Google Scholar 

  3. B. Hamel, “Two-fluids hydrodynamic equations for a neutral, disparate-mass, binary mixture,”Phys. Fluids,9, 12 (1966).

    MathSciNet  Google Scholar 

  4. E. Goldman and L. Sirovich, “Equations for gas mixtures,”Phys. Fluids,10, 1928 (1967).

    Article  Google Scholar 

  5. V. V. Gogosov, V. A. Polyanskii, I. P. Semenova, and A. E. Yakubenko, “Equations of electrodynamics and transport coefficients in a strong electric field,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 3 (1969).

  6. V. P. Silin,An Introduction to the Kinetic Theory of Gases [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  7. C. J. Goebal, S. M. Harris, and E. A. Johnson, “Two-temperature disparate-mass gas mixture; a thirteen moment description,”Phys. Fluids,19, 627 (1976).

    ADS  Google Scholar 

  8. V. M. Zhdanov,Transport Phenomena in a Multicomponent Plasma [in Russian], Énergoizdat, Moscow (1982).

    Google Scholar 

  9. M. Sh. Shavaliev, “Multifluid hydrodynamic equations for gas mixtures,” Preprint No. 28 [in Russian], Institute of Theoretical and Applied Mechanics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk (1988).

    Google Scholar 

  10. A. I. Osipov and E. V. Stypochenko, “Violation of the Maxwell distribution in chemical reactions. A reacting one-component system in a heavy-gas thermostat,”Teor. Eksp. Khim.,6, 753 (1970).

    Google Scholar 

  11. O. G. Buzykin and N. K. Makashev, “Exothermic gas-phase reactions as a reason for the development of multitemperature polyatomic gas flows,”Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 87 (1981).

  12. O. G. Buzykin, V. S. Galkin, and N. K. Makashev, “Peculiarities and applicability conditions of the macroscopic description of disparate molecular mass mixture motion,”Rarefied Gas Dynamics, Pap. 13th Symp., Vol. 2, Plenum Press, New York (1982), p. 1277.

    Google Scholar 

  13. S. I. Braginskii, “Transport phenomena in plasma,” in:Problems of Plasma Theory, No. 1 [in Russian], Atomizdat, Moscow (1963), p. 183.

    Google Scholar 

  14. R. M. Chmielski and J. K. Ferziger, “Transport properties of a nonequilibrium, partially ionized gas,”Phys. Fluids,10, 364 (1967).

    Google Scholar 

  15. V. S. Galkin, “Application of the Chapman-Enskog method to a two-temperature binary gas mixture,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 58 (1967).

  16. V. S. Galkin, “On the derivation of two-temperature gas-dynamic equations by the modified Chapman-Enskog method,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 145 (1981).

  17. V. S. Galkin, M. N. Kogan, and N. K. Makashev, “The generalized Chapman-Enskog method,”Dokl. Akad. Nauk SSSR,220, 304 (1975).

    ADS  Google Scholar 

  18. V. S. Galkin, M. N. Kogan, and N. K. Makashev, “The generalized Chapman-Enskog method. Pt. 2. The equations for a multivelocity multitemperature gas mixture,”Uch. Zap. TsAGI,6, 15 (1975).

    ADS  Google Scholar 

  19. M. N. Kogan, V. S. Galkin, and N. K. Makashev, “Generalized Chapman-Enskog method: derivation of the nonequilibrium gas-dynamic equations,”Rarefied Gas Dynamics. Pap. 11th Int. Symp., Vol. 2, CEA, Paris (1979), p. 693.

    Google Scholar 

  20. V. A. Matsuk and V. A. Rykov, “The Chapman-Enskog method for a gas mixture,”Dokl. Akad. Nauk SSSR,233, 49 (1977).

    ADS  Google Scholar 

  21. V. A. Matsuk and V. A. Rykov, “The Chapman-Enskog method for a multivelocity multitemperature reacting gas mixture,”Zh. Vychisl. Mat. Mat. Fiz.,18, 1230 (1978).

    MathSciNet  Google Scholar 

  22. E. G. Kolesnichenko and S. A. Losev, “The kinetics of relaxation processes in moving media,” in:Plasma Chemistry, No. 6 [in Russian], Atomizdat, Moscow (1979), p. 209.

    Google Scholar 

  23. V. S. Galkin and N. K. Makashev, “Applicability conditions and molecular-kinetic derivation of multitemperature multivelocity gas-dynamic equations,”Zh. Vychisl. Mat. Mat. Fiz.,23, 1443 (1983).

    MathSciNet  Google Scholar 

  24. J. Fernandez de la Mora and R. Fernandez-Feria, “Two-fluid Chapman-Enskog theory for binary gas mixtures,”Phys. Fluids,30, 2063 (1987).

    Article  ADS  Google Scholar 

  25. V. S. Galkin and N. K. Makashev, “Modification of the first approximation of the Chapman-Enskog method for a gas mixture,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 178 (1992).

  26. H. Grad, “Theory of rarefied gases,” in:Rarefied Gas Dynamics, Pergamon Press, London (1960), p. 100.

    Google Scholar 

  27. T. F. Morse, “Energy and momentum exchange between nonequipartitation gases,”Phys. Fluids,10, 1420 (1963).

    MathSciNet  Google Scholar 

  28. G. A. Bird,Molecular Gas Dynamics, Oxford (1976).

  29. I. K. Kikoin (ed.),Tables of Physical Quantities: Handbook [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  30. L. J. H. Huxley and R. W. Crompton,Diffusion and Drift of Electrons in Gases, Wiley, New York (1977).

    Google Scholar 

  31. V. S. Galkin and N. K. Makashev, “Series expansions and properties of the collision integrals for particles with large mass disparity,” Tr. TsAGI, No. 2269, 11 (1985).

  32. J. H. Ferziger and H. G. Kaper,Mathematical Theory of Transport Processes in Gases, North-Holland, Amsterdam (1972).

    Google Scholar 

  33. J. O. Hirschfelder, C. F. Curtis, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York, Chapman and Hall, London (1957).

    Google Scholar 

  34. A. F. Kolesnikov and G. A. Tirskii, “Equations of hydrodynamics for partially ionized mixtures of gases with transport coefficients in higher approximations,” in:Molecular Gas Dynamics [in Russian], Nauka, Moscow (1982), p. 20.

    Google Scholar 

  35. J. Fernandex de la Mora and R. Fernandez-Feria, “Kinetic theory of binary gas mixtures with large mass disparity,”Phys. Fluids,30, 740 (1987).

    ADS  Google Scholar 

  36. M. N. Kogan, V. S. Galkin, and N. K. Makashev, “Scope and basic properties of the generalized Chapman-Enskog method,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 126 (1984).

  37. Yu. P. Lun'kin, V. F. Mymrin, and C. E. Khoruzhnikov, “Transport equations for a polydisperse gas mixture,” in:Aerodynamics of Rarefied Gases, No. 11 [in Russian], Izd. Leningrad Gos. Univ., Leningrad (1983), p. 67.

    Google Scholar 

  38. Yu. P. Lun'kin and V. F. Mymrin, “A kinetic model of a gas mixture,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 134 (1981).

  39. V. M. Kuznetsov, “Kinetic models of disperse media with internal degrees of freedom,”Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 113 (1990).

  40. V. V. Struminskii, “Methods of solving the system of kinetic equations for a gas mixture,”Dokl. Akad. Nauk SSSR,237, 533 (1977).

    ADS  MATH  MathSciNet  Google Scholar 

  41. V. V. Struminskii and V. E. Turkov, “On the transport phenomena in multicomponent gas mixtures,” Preprint No. 18 [in Russian], USSR Academy of Sciences, Mechanics of Inhomogeneous Media Sector, Moscow (1987).

    Google Scholar 

  42. V. V. Struminskii, “Mechanics of inhomogeneous media,” in:Molecular Gas Dynamics and Mechanics of Inhomogeneous Media [in Russian], Nauka, Moscow (1990), p. 5.

    Google Scholar 

  43. N. K. Makashev, “Properties of the generalized Chapman-Enskog method,”Tr. TsAGI, No. 1742, 27 (1976).

    Google Scholar 

Download references

Authors

Additional information

Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 180–201, January–February, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galkin, V.S., Makashev, N.K. Kinetic derivation of the gas-dynamic equation for multicomponent mixtures of light and heavy particles. Fluid Dyn 29, 140–155 (1994). https://doi.org/10.1007/BF02330636

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02330636

Keywords

Navigation