Skip to main content
Log in

Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans Green, London, 1954).

    Google Scholar 

  2. Ya. I. Frenkel’, Kinetic Theory of Liquids (Akad. Nauk SSSR, Moscow, 1945; Dover, New York, 1955).

    Google Scholar 

  3. J. R. Manning, Diffusion Kinetics for Atoms in Crystals (Van Nostrand Reinhold, Princeton, 1968).

    Google Scholar 

  4. A. M. Krivoglaz and A. A. Smirnov, The Theory of Alloy Ordering (Gos. Izd. Fiz. Matem. Liter., Moscow, 1958) [in Russian].

    Google Scholar 

  5. P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972).

    Google Scholar 

  6. I. B. Borovskii, K. P. Gurov, I. D. Machukova, and Yu. E. Ugaste, Interdiffusion in Alloys (Nauka, Moscow, 1973).

    Google Scholar 

  7. B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids (Metallurgiya, Moscow, 1974) [in Russian].

    Google Scholar 

  8. K. P. Gurov, B. A. Kartashkin, and Yu. E. Ugaste, Interdiffusion in Multiphase Metallic Systems (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  9. A. A. Smirnov, Theory of Interstitial Alloys (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  10. V. V. Smirnov, Diffusion Theory in Interstitial Alloys (Naukova Dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  11. L. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973).

    Google Scholar 

  12. B. S. Bokshtein, Diffusion in Metals (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  13. V. N. Chebotin, Physical Chemistry of Solids (Khimiya, Moscow, 1982) [in Russian].

    Google Scholar 

  14. N. I. Nikolaev, Diffusion in Membranes (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  15. A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controlled Chemical Processes (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  16. A. E. Chalykh, Water Diffusion in Polymer Systems (Khimiya, Moscow, 1987) [in Russian].

    Google Scholar 

  17. S. F. Timashev, Physicochemistry of Membrane Processes (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  18. E. A. Mason and A. P. Malinauskas, Gas Transport in Porous Media: The Dusty-Gas Model (Elsevier, Amsterdam, 1983).

    Google Scholar 

  19. A. V. Lykov, Heat and Mass Transfer (Energy, Moscow, 1978) [in Russian].

    Google Scholar 

  20. A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed. (Wiley, New York, 1975).

    Google Scholar 

  21. C. N. Satterfield, Mass Transfer in Heterogeneous Catalysis (MIT, Cambridge, MA, 1970).

    Google Scholar 

  22. Yu. K. Tovbin, Molecular Adsorption Theory in Porous Bodies (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  23. A. G. Khachaturyan, Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  24. J. D. Fast, Interaction of Metals and Gases (Academic, New York, 1965; Metallurgiya, Moscow, 1975).

    Google Scholar 

  25. Yu. K. Tovbin, Theory of Physical Chemistry Processes at a Gas–Solid Surface Processes (CRC, Boca Raton, FL, 1991; Nauka, Moscow, 1990).

    Google Scholar 

  26. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2005) [in Russian].

    Google Scholar 

  27. A. I. Gusev and A. A. Rempel’, Nanocrystalline Materials (Fizmatlit, Moscow, 2001; Cambridge Int., Cambridge, 2004).

    Book  Google Scholar 

  28. Yu. K. Tovbin, Dokl. Akad. Nauk SSSR 302, 385 (1988).

    CAS  Google Scholar 

  29. J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1975).

    Google Scholar 

  30. W. Frank, U. Gosele, H. Mehrer, and A. Seeger, Diffusion in Crystalline Solids, Ed. by G. E. Murch and A. S. Nowick (Academic, Orlando, 1984).

  31. Yu. K. Tovbin and V. N. Komarov, Russ. Chem. Bull. 62, 2620 (2013).

    Article  CAS  Google Scholar 

  32. Yu. K. Tovbin and V. N. Komarov, Phys. Solid State 56, 341 (2014).

    Article  CAS  Google Scholar 

  33. Yu. K. Tovbin, S. V. Titov, and V. N. Komarov, Phys. Solid State 57, 360 (2015).

    Article  CAS  Google Scholar 

  34. G. Neumann and C. Tuijn, Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Vol. 14 of Pergamon Materials Series (Pergamon, Oxford, 2009).

    Google Scholar 

  35. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Charles S. Thomas, Sprinfield, IL, 1955).

    Google Scholar 

  36. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    Google Scholar 

  37. R. Haase, Thermodynamik der Irreversiblen Prozesse (Dr. Dierrich Steinkopff, Darmstadt, 1963).

    Book  Google Scholar 

  38. V. M. Glazov and L. M. Pavlova, Chemical Thermodynamics and Phase Equilibria (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  39. E. A. Guggenheim, Mixture (Oxford Univ. Press, Oxford, 1952).

    Google Scholar 

  40. I. P. Prigogine, The Molecular Theory of Solutions (Interscience, Amsterdam, 1957).

    Google Scholar 

  41. N. A. Smirnova, Molecular Theory of Solutions (Khimiya, Leningrad, 1982) [in Russian].

    Google Scholar 

  42. E. M. Gokhman, Yu. K. Tovbin, and V. K. Fedyanin, Physics of Interphase Phenomena (Kab.-Balk. Gos. Univ., Nal’chik, 1981), p. 145 [in Russian].

    Google Scholar 

  43. Yu. K. Tovbin, V. N. Komarov, and E. S. Zaitseva, Russ. J. Phys. Chem. A 90, 2096 (2016).

    Article  CAS  Google Scholar 

  44. I. Z. Fisher, in Problems of Many-Body Systems and Plasma Physics (Nauka, Moscow, 1967), p. 204 [in Russian].

    Google Scholar 

  45. S. P. Timoshenko and J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951; Nauka, Moscow, 1979).

    Google Scholar 

  46. Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 705 (2010).

    Article  CAS  Google Scholar 

  47. Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 1640 (2010).

    Article  CAS  Google Scholar 

  48. Yu. K. Tovbin, Russ. J. Phys. Chem. A 86, 1356 (2012).

    Article  CAS  Google Scholar 

  49. Yu. K. Tovbin, Russ. Chem. Bull. 52, 869 (2003).

    Article  CAS  Google Scholar 

  50. T. L. Hill, Statistical Mechanics. Principles and Selected Applications (McGraw–Hill, New York, 1956).

    Google Scholar 

  51. Yu. K. Tovbin, Zh. Fiz. Khim. 62, 865 (1990).

    Google Scholar 

  52. Yu. K. Tovbin, Nanotechnol. Russ. 5, 715 (2010).

    Article  Google Scholar 

  53. Yu. K. Tovbin, Russ. Chem. Rev. 57, 520 (1988).

    Article  Google Scholar 

  54. Yu. K. Tovbin, Russ. J. Phys. Chem. A 71, 1304 (1997).

    Google Scholar 

  55. Yu. K. Tovbin, Dokl. Akad. Nauk SSSR 312, 1423 (1990).

    CAS  Google Scholar 

  56. Yu. K. Tovbin, Prog. Surf. Sci. 34 (1–4), 1 (1990).

    Article  CAS  Google Scholar 

  57. Yu. K. Tovbin, Zh. Fiz. Khim., No. 5, 1395 (1992).

    Google Scholar 

  58. Yu. K. Tovbin, Russ. J. Phys. Chem. A 90, 1439 (2016).

    Article  CAS  Google Scholar 

  59. R. M. Barrer, in Diffusion in Polymers, Ed. by J. Crank and G. Park (Academic, New York, 1968), Ch. 8.

  60. K. Rogers, in Physics and Chemistry of the Organic Solid State (Wiley, New York, 1965), p. 229.

    Google Scholar 

  61. H. L. Frisch and S. A. Stern, Crit. Rev. Solid State Mater. Sci. 11, 123 (1985).

    Article  Google Scholar 

  62. M. V. Sefton and K. T. Chiang, Adv. Chem. 174, 243 (1979).

    Article  CAS  Google Scholar 

  63. Yu. K. Tovbin and E. V. Votyakov, Zh. Fiz. Khim. 67, 2126 (1993).

    CAS  Google Scholar 

  64. V. V. Gvozdev, E. V. Votyakov, and Yu. K. Tovbin, Chem. Phys. Rep. 15, 1205 (1996).

    Google Scholar 

  65. V. V. Gvozdev and Yu. K. Tovbin, Khim. Fiz. 18, 88 (1999).

    CAS  Google Scholar 

  66. E. V. Votyakov and Yu. K. Tovbin, Russ. J. Phys. Chem. A 71, 592 (1997).

    Google Scholar 

  67. E. V. Votyakov and Yu. K. Tovbin, Russ. J. Phys. Chem. A 71, 760 (1997).

    Google Scholar 

  68. Yu. K. Tovbin and E. V. Votyakov, Langmuir 9, 2652 (1993).

    Article  CAS  Google Scholar 

  69. Yu. K. Tovbin, A. B. Rabinovich, and D. V. Eremich, Russ. J. Phys. Chem. A 78, 425 (2004).

    Google Scholar 

  70. Yu. K. Tovbin and A. G. Petukhov, Russ. Chem. Bull. 57, 18 (2008).

    Article  CAS  Google Scholar 

  71. D. V. Eremich and Yu. K. Tovbin, Russ. J. Phys. Chem. A 78, 615 (2004).

    Google Scholar 

  72. H. Gleiter, in Microstructure in Physical Metallurgy, Ed. by R. W. Cahn and P. Haase (North-Holland Physics, Amsterdam, 1983), p. 649.

  73. R. W. Balluffi, in Diffusion in Crystalline Solids, Ed. by G. E. Murch and A. S. Nowick (Academic, New York, 1984), p. 320.

  74. D. Wolf and S. Yip, Materials Interfaces–Atomic-Level Structure and Properties (Chapman and Hall, London, 1992).

    Google Scholar 

  75. G. B. Gibbs and J. E. Harris, in Proceedings of the Interfaces Conference, Melbourne, 1969 (Austral. Inst. of Metals, Butterworth, 1969).

    Google Scholar 

  76. R. W. Balluffi, Phys. Status Solidi 42, 11 (1970).

    Article  CAS  Google Scholar 

  77. A. D. le Claire, in Diffusion in Solid Metals and Alloys, Ed. by H. Mehrer, Vol. 26 of Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics (Springer, Berlin, 1990), Ch. 11, p. 626.

  78. A. D. le Claire and A. Rabinovich, in Diffusion if Crystalline Solids, Ed. by G. E. Murch and A. S. Nowick (Academic, New York, 1984), p. 259.

  79. I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interface Boundary Diffusion (Wiley, New York, 1995).

    Google Scholar 

  80. I. V. Belova and G. E. Mursh, J. Metastable Nanocryst. Mater. 19, 23 (2004).

    Article  Google Scholar 

  81. J. Jamnik, J. R. Kalnin, E. A. Kotomin, and J. Maier, Phys. Chem. Chem. Phys. 8, 1310 (2005).

    Article  Google Scholar 

  82. S. Divinski, J.-S. Lee, and Chr. Herzig, J. Metastable Nanocryst. Mater. 19, 55 (2004).

    Article  CAS  Google Scholar 

  83. R. A. Laudise, The Growth of Single Crystals (Prentice-Hall, Englewood Cliffs, NJ, 1970).

    Google Scholar 

  84. R. L. Parker, Solid State Physics (Academic, New York, 1970), Vol. 25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Original Russian Text © Yu.K. Tovbin, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 8, pp. 1243–1255.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states. Russ. J. Phys. Chem. 91, 1361–1372 (2017). https://doi.org/10.1134/S0036024417080350

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417080350

Keywords

Navigation