Skip to main content
Log in

Three-dimensional crack tip deformation measurement using combined Moiré-Sagnac interferometry

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A combined Moiré-Sagnac interferometry method is developed for in-plane (u andv) and out-of-plane (w) surface deformation measurement. The combined optical setup is used to measure three-dimensional crack tip deformations of AI 2024-0 and AI 2024-T4 specimens at room temperature and an inconel 909 specimen at 570°C. Measured displacements near the crack tip region of the AI 2024-T4 specimen are used as input nodal displacements to determine stress intensity factors based on two-dimensional and three-dimensional Jacobian derivative method. The values compare favorably with theoretical calculations. The extent of the three-dimensional crack tip deformation zone is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, B.S.J., Zhang, G.Z., Jenkins, M.G., Ferber, M., and Ifju, P., “Development of Moire-interferometry for In-situ Material Surface Deformation Measurement at High Temperature,” SEM Spring Conference on Experimental Mechanics, Dearborn, Michigan, 964–976 (1993).

  2. Wang, F.X., Ifju, P., and Kang, B.S.-J., “High-temperature Moire Interferometry Using Zero-thickness Grating,” SEM Spring Conference on Experimental Mechanics, Las Vegas, Nevada, 727–731 (1992).

  3. Kang, B.S.-J., Yao, Q., Li, Z., andLiu, C.T., “Investigation on Environmental Assisted Fracture Behavior of Iron Aluminides Using Moire Interferometry,”Mat. Sci. Eng.,A239–240,344–352 (1997).

    Google Scholar 

  4. Carpenter, W., Kang, B.S.-J., and Chang, K.M., “SAGBO Mechanism on High Temperature Cracking Behavior of Ni-base Superalloys,” TMS International Symposium on Superalloys, 718, 625, 706 and Various Derivatives, Pittsburgh, Pennsylvania, 679–688 (1997).

  5. Wang, F.X. and Kang, B.S.-J., “Moire Interferometry in Liquid Mediums,” SEM, Proceedings of the VII International Congress on Experimental Mechanics, Las Vegas, Nevada, 1711–1766 (1992).

  6. Vest, C.M., “Coherent Optics, Holography, and Holographic Interferometry,”in Holographic Interferometry, John Wiley & Sons, New York, 1–66 (1979).

    Google Scholar 

  7. Hecht, E. andZajac, A., Optics, Addison-Wesley, Reading, MA (1974).

    Google Scholar 

  8. Post, D., Han, B., andIfju, P., High Sensitivity Moire, Springer-Verlag, New York (1994).

    Google Scholar 

  9. Asundi, A., Cheung, M.T., andLee, C.S., “Moire Interferometry for Simultaneous Measurement of u, v, w,” EXPERIMENTAL MECHANICS,29,258–260 (1989).

    Article  Google Scholar 

  10. Daniel, I.M., “Experimental Methods in Applied Mechanics,”J. Appl. Mech.,50,973–976 (1983).

    Google Scholar 

  11. Barbero, E.J. andReddy, J.N., “The Jacobian Derivative Method for Three-dimensional Fracture Mechanics,”Communications Appl. Numer. Meth.,6,507–518 (1990).

    Google Scholar 

  12. Edward, H.L. and Wanhill, R.J.H., “Crack-tip Plasticity,” in Fracture Mechanics, Edward Arnold, 56–71 (1984).

  13. Hahn, G.T. andRosenfield, A.R., “Local Yielding and Extension of a Crack Under Plane Stress,”Acta Metall.,13,293–306 (1965).

    Google Scholar 

  14. Yang, W. andFreund, L.G., “Transverse Shear Effects for Throughcracks in an Elastic Plate,”Int. J. Solids Struct.,21,977–994 (1985).

    MathSciNet  Google Scholar 

  15. Nakamura, T. andParks, D.M., “Three-dimensional Stress Field near the Crack Front of Thin Elastic Plate,”J. Appl. Mech.,55,805–813 (1988).

    Google Scholar 

  16. Rosakis, A.J. andRavi-Chandar, K., “On Crack-tip Stress State: An Experimental Evaluation of Three-dimensional Effects,”Int. J. Solids Struct.,22,121–134 (1986).

    Google Scholar 

  17. Sagnac, G., “L'ether lumineux demontre par l'effect du vent relatif dether dans un interferometre en rotation uniforme,”Acadamie der Science, Paris Comptes Randus,157,708–710 (1913).

    Google Scholar 

  18. Eichmann, G., Li, Y., andAlfano, R.R., “Digital Optical Logic Using a Pulsed Sagnac Interferometer Switch,”Opt. Eng.,25,91–97 (1986).

    Google Scholar 

  19. Huang, A., “Sagnac Fiber Logic Gates and Their Possible Applications: A System Perspective,”Appl. Opt.,33,6254–6266 (1994).

    Google Scholar 

  20. Post, D., “Moire Interferometry,”in Handbook on Experimental Mechanics, 2d ed., A.S. Kobayashi ed., Society for Experimental Mechanics, Bethel, CT, 297–364 (1993).

    Google Scholar 

  21. Wang, F.X., Kang, B.S.-J., and Lin, K.Y., “Full-field Displacements by Four-beam Moire Interferometry,” SEM Spring Conference on Experimental Mechanics, Milwaukee, Wisconsin, 278–284 (1991).

  22. Hertzberg, R.W., Elements of Fracture Mechanics, John Wiley & Sons, New York (1989).

    Google Scholar 

  23. Hellen, T.K., “On the Method of Virtual Crack Extension,”Int. J. Numer. Meth. Eng.,9,187–207 (1975).

    Article  MATH  Google Scholar 

  24. Parks, D.M., “A Stiffness Derivative Finite Element Technique for Determination of Elastic Crack-tip Stress Intensity Factors,”Int. J. Fract.,10,487–502 (1974).

    Article  Google Scholar 

  25. Barbero, E.J., “Computer Code for 2-D and 3-D Jacobian Derivative Method,”CFC report, West Virginia University, Morgantown (1995).

    Google Scholar 

  26. Tada, H., Paris, P.C., andIrwin, G.R, The Stress Analysis of Cracks—Handbook, Paris Production, Inc., St. Louis, MO (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, B.SJ., Anderson, S.M. Three-dimensional crack tip deformation measurement using combined Moiré-Sagnac interferometry. Experimental Mechanics 41, 84–91 (2001). https://doi.org/10.1007/BF02323109

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02323109

Key Words

Navigation