Skip to main content
Log in

Theoretical calculations on the influence of the inorganic nitrogen source on parameters for aerobic growth of microorganisms

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The amount of ATP required for the formation of microbial cells growing in a minimal medium with various nitrogen sources was calculated. In a glucose-mineral salts medium 28.8 g cells can be formed per mole ATP with ammonia and 23.1 for growth with nitrate. For growth with molecular nitrogen 11.1; 8.7; 7.1 and 6.0 g cells can be formed per mole ATP for ATP/N2 ratios of 12, 18, 24 and 30 respectively. A method is given for the calculation of Ysub, YO2 and Yc0 2 values for aerobic growth with glucose, succinate or methanol and various nitrogen sources. In this method use is made of the elementary composition of the cells and of mass balance equations. As an assimilation equation: C6H12O7 + 1.4 HNO3 + 6.85 “H2” → C6H10.84N1.4O3.07 + 8.13 H2O is given for growth ofParacoccus denitrificans with gluconate and nitrate. From this equation and the molar growth yield for gluconate the oxygen uptake, carbon dioxide evolution and the YO2 value can be calculated. A very good agreement between the calculated values and the experimental values was obtained. For the calculation of the ATP production it is essential to know the number of phosphorylation sites in the respiratory chain. Calculations are given for 2 (sites I + II) and 3 phosphorylation sites. The molar growth yields for growth with nitrate and nitrogen are much smaller than that for growth with ammonia. The YO2 values for growth with glucose and nitrate are higher (with 2 sites) or somewhat smaller (with 3 sites) than for growth with ammonia. The YO2 values for growth with nitrogen are always very low. The calculations show that especially YO2 is very dependent on the number of phosphorylation sites. For growth with methanol YCO 2 is strongly dependent on the nature of the assimilation pathway for methanol and on the nitrogen source. The molar growth yields for growth with glucose, succinate or methanol and nitrogen are about the same as when nitrate is the nitrogen source for organisms with 3 phosphorylation sites. The theoretical efficiency of nitrogen fixation in grow-ing cells is much lower (dependent on the ATP/N2 ratio) than that in nongrowing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleem, M. I. H. 1977. Coupling of energy with electron transfer reactions in chemolithotrophic bacteria. -Symp. Soc. Gen. Microbiol.27: 351–381.

    CAS  Google Scholar 

  • Anthony, C. 1975. The microbial metabolism of C1 compounds. The cytochromes ofPseudomonas AM1. -Biochem. J.146: 289–298.

    CAS  PubMed  Google Scholar 

  • Anthony, C. andZatman, L. J. 1964. The microbial oxidation of methanol. The methanoloxidizing enzyme ofPseudomonas sp. M27. -Biochem. J.92: 614–621.

    CAS  PubMed  Google Scholar 

  • Berndt, H., Ostwal, K.-P., Lalucat, J., Schumann, Ch., Mayer, F. andSchlegel, H. G. 1976. Identification and physiological characterization of the nitrogen-fixing bacteriumCorynebacterium autotrophicum GZ29. -Arch. Microbiol.108: 17–26.

    Article  CAS  PubMed  Google Scholar 

  • de Bont, J. A. M. 1976a. Nitrogen fixation by methane-utilizing bacteria. -Antonie van Leeuwenhoek42: 245–253.

    CAS  PubMed  Google Scholar 

  • de Bont, J. A. M. 1976b. Hydrogenase activity in nitrogen-fixing methane-oxidizing bacteria. -Anionic van Leeuwenhoek42: 255–259.

    CAS  Google Scholar 

  • Brotonegoro, S. 1974. Nitrogen fixation and nitrogenase activity ofAzotobacter chroococcum. -Thesis Agricultural University, Wageningen.

    Google Scholar 

  • Brown, C. M., Macdonald-Brown, D. S. andMeers, J. L. 1974. Physiological aspects of microbial inorganic nitrogen metabolism. -Adv. Microb. Physiol.11: 1–52.

    Google Scholar 

  • Cooney, C. L., Wang, H. Y. andWang, D. I. C. 1977. Computer-aided material balancing for prediction of fermentation parameters. -Biotechnol. Bioeng.19: 55–67.

    CAS  PubMed  Google Scholar 

  • Cox, R. B. andQuayle, J. R. 1975. The autotrophic growth ofMicrococcus denitrificans on methanol. -Biochem. J.150: 569–571.

    CAS  PubMed  Google Scholar 

  • Daesch, G. andMortenson, L. E. 1967. Sucrose catabolism inClostridium pasteurianum and its relation to N2 fixation. -J. Bacteriol.96: 346–351.

    Google Scholar 

  • Dalton, H. andPostdate, J. R. 1969. Growth and physiology ofAzotobacter chroococcum in continuous culture. -J. Gen. Microbiol.56: 307–319.

    CAS  Google Scholar 

  • Dixon, R. O. D. 1972. Hydrogenase in legume root nodule bacteroids: Occurrence and properties. -Arch. Microbiol.85: 193–201.

    CAS  Google Scholar 

  • Edwards, C., Spode, J. A. andJones, C. W. 1977. The growth of Paracoccus denitrificans. -FEMS Microbiology Letters1: 67–70.

    Article  CAS  Google Scholar 

  • Forrest, W. W. andWalker, D. J. 1971. The generation and utilization of energy during growth. -Adv. Microb. Physiol.5: 213–274.

    CAS  PubMed  Google Scholar 

  • Goldberg, J., Rock, J. S., Ben-Bassat, A. andMateles, R. I. 1976. Bacterial yields on methanol, methylamine, formaldehyde and formate. -Biotechnol. Bioeng.18: 1657–1668.

    Article  CAS  PubMed  Google Scholar 

  • Gunsalus, I. C. andShuster, C. W. 1961. Energy-yielding metabolism in bacteria, p. 1–58.In: I. C. Gunsalus and R. Y. Stanier, (eds.), The Bacteria, Vol. 2. -Academic Press, New York and London.

    Google Scholar 

  • Harder, W. andvan Dijken, J. P. 1976. Theoretical considerations on the relation between energy production and growth of methane-utilizing bacteria, p. 403–418.In: H. G. Schlegel, G. Gottschalk and N. Pfennig, (eds.), Microbial production and utilization of gases (H2, CH4, CO). -E. Goltze Verlag, Göttingen.

    Google Scholar 

  • Hazeu, W. 1975. Some cultural and physiological aspects of methane-utilizing bacteria. -Antonie van Leeuwenhoek41: 121–134.

    CAS  PubMed  Google Scholar 

  • Herbert, D. 1976. Stoichiometric aspects of microbial growth, p. 1–30.In: A. C. R. Dean, D. C. Ellwood, C. G. T. Evans and J. Melling, (eds.), Continuous culture 6, applications and new fields. -Society of Chemical Industry, London.

    Google Scholar 

  • Higgins, I. J., Knowles, C. J. andTongs, G. M. 1976. Enzymic mechanisms of methane and methanol oxidation in relation to electron transport systems in methylotrophs; purification and properties of methane oxygenase, p. 389–402.In: H. G. Schlegel, G. Gottschalk and N. Pfennig, (eds.), Microbial production and utilization of gases. -E. Goltze Verlag, Göttingen.

    Google Scholar 

  • Hill, S. 1976. The apparent ATP requirement for nitrogen fixation in growingKlebsiella pneumoniae. -J. Gen. Microbiol.95: 297–312.

    CAS  Google Scholar 

  • Hill, S., Drozd, J. W. andPostdate, J. R. 1972. Environmental effects on the growth of nitrogen-fixing bacteria. -J. Appl. Chem. Biotechnol.22: 541–558.

    CAS  Google Scholar 

  • Hine, P. W. andLees, H. 1976. The growth of nitrogen-fixingAzotobacter chroococcum in continuous culture under intense aeration. -Can. J. Microbiol.22: 611–618.

    CAS  PubMed  Google Scholar 

  • Hyndman, L. A., Burris, R. H. andWilson, P. W. 1953. Properties of hydrogenase fromAzotobacter vinelandii. -J. Bacteriol.65: 522–531.

    CAS  PubMed  Google Scholar 

  • Imai, K., Asano, A. andSato, R. 1967. Oxidative phosphorylation in Micrococcus denitrificans. I. Preparation and properties of phosphorylating membrane fragments. -Bioch. Biophys. Acta143: 462–476.

    CAS  Google Scholar 

  • Jones, C. W. 1977. Aerobic respiratory systems in bacteria. -Symp. Soc. Gen. Microbiol.27: 23–59.

    CAS  Google Scholar 

  • Knobloch, K., Ishaque, M. andAleem, M. I. H. 1971. Oxidative phosphorylation inMicrococcus denitrificans under autotrophic growth conditions. -Arch. Mikrobiol.76:114–125.

    Article  CAS  PubMed  Google Scholar 

  • de Kwaadsteniet, J. W., Jager, J. C. andStouthamer, A. H. 1976. A quantitative description of heterotrophic growth in micro-organisms. -J. Theor. Biol.57: 103–120.

    PubMed  Google Scholar 

  • Lawford, H. G. 1977. Efficiency of energy conservation inParacoccus denitrificans during carbon or sulphate-limited growth. -Proc. Soc. Gen. Microbiol.4: 71–72.

    Google Scholar 

  • Lawford, H. G., Cox, J. C., Garland, P. B. andHaddock, B. A. 1976. Electron transport in aerobically grown Paracoccus denitrificans: Kinetic characterization of the membrane-bound cytochromes and the stoichiometry of respiration-driven proton translocation. -FEBS Letters64: 369–374.

    Article  CAS  PubMed  Google Scholar 

  • Levine, D. W. andCooney, C. L. 1973. Isolation and characterization of a thermotolerant methanol-utilizing yeast. -Appl. Microbiol.26: 982–990.

    CAS  PubMed  Google Scholar 

  • Maclennan, D. G., Ousby, J. C., Vasey, R. B. andCotton, N. T. 1971. The influence of dissolved oxygen onPseudomonas AM1 grown on methanol in continuous culture. -J. Gen. Microbiol.69: 395–404.

    CAS  PubMed  Google Scholar 

  • Meijer, E. M., van Verseveld, H. W., van der Beek, E. G. andStouthamer, A. H. 1977. Energy conservation during aerobic growth inParacoccus denitrificans. -Arch. Microbiol.112: 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, D. J. andJones, C. W. 1973. Oxidative phosphorylation in bacteria which contain different cytochrome oxidases. -Eur. J. Bioch.36: 144–151.

    CAS  Google Scholar 

  • Minchin, F. R. andPate, J. S. 1973. The carbon balance of a legume and the functional economy of its root nodules. -J. Exp. Bot.24: 259–271.

    CAS  Google Scholar 

  • Morowitz, H. J. 1968. Energy Flow in Biology, p. 179. -Academic Press, London and New York.

    Google Scholar 

  • Netrusov, A. I., Rodionov, Y. V. andKondratieva, E. N. 1977. ATP generation coupled with C1-compound oxidation by methylotrophic bacteriumPseudomonas sp. 2. -FEBS Letters76: 56–58.

    Article  CAS  PubMed  Google Scholar 

  • Okon, Y., Albrecht, S. L. andBurris, R. H. 1976. Factors affecting growth and nitrogen fixation ofSpirillum lipoferum. -J. Bacteriol.127: 1248–1254.

    CAS  PubMed  Google Scholar 

  • Pirt, S. J. 1965. The maintenance energy of bacteria in growing cultures. -Proc. R. Soc. London, Ser. B.163: 224–231.

    CAS  Google Scholar 

  • Schubert, K. R. andEvans, H. J. 1976. Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. -Proc. Nat. Acad. Sci.73: 1207–1211.

    CAS  Google Scholar 

  • Shanmugam, K. T. andValentine, R. C. 1975. Microbial production of ammonium ion from nitrogen. -Proc. Nat. Acad. Sci.72: 136–139.

    CAS  PubMed  Google Scholar 

  • Smith, L. A., Hill, S. andYates, M. G. 1976. Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. -Nature262: 209–210.

    CAS  PubMed  Google Scholar 

  • Stouthamer, A. H. 1973. A theoretical study on the amount of ATP required for synthesis of microbial cell material. -Antonie van Leeuwenhoek39: 545–565.

    CAS  PubMed  Google Scholar 

  • Stouthamer, A. H. 1977. Energetic aspects of the growth of microorganisms. -Symp. Soc. Gen. Microbiol.28: 285–315.

    Google Scholar 

  • Stouthamer, A. H. andBettenhaussen, C. W. 1973. Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. A reevaluation of the method for the determination of ATP production by measuring molar growth yields. -Bioch. Biophys. Acta301: 53–70.

    CAS  Google Scholar 

  • Stouthamer, A. H. andBettenhaussen, C. W. 1975. Determination of the efficiency of oxidative phosphorylation in continuous cultures ofAerobacter aerogenes. -Arch. Microbiol.102: 187–192.

    Article  CAS  PubMed  Google Scholar 

  • Stouthamer, A. H. andBettenhaussen, C. W. 1977. A continuous culture study of an ATPase-negative mutant ofEscherichia coli. -Arch. Microbiol.113: 185–189.

    Article  CAS  PubMed  Google Scholar 

  • van Verseveld, H. W., Meijer, E. M. andStouthamer, A. H. 1977. Energy conservation during nitrate respiration inParacoccus denitrificans. -Arch. Microbiol.112: 17–23.

    Article  PubMed  Google Scholar 

  • van Verseveld, H. W. andStouthamer, A. H. 1976. Oxidative phosphorylation inMicrococcus denitrificans. Calculation of the P/O ratio in growing cells. -Arch. Microbiol.107:241–247.

    Article  PubMed  Google Scholar 

  • Whittenbury, R., Colby, J., Dalton, H. andReed, H. L. 1976. Biology and ecology of methane oxidizers, p. 281–292.In: H. G. Schlegel, G. Gottschalk, and N. Pfennig, (eds.), Microbial production and utilization of gases. -E. Goltze Verlag, Göttingen.

    Google Scholar 

  • Whittenbury, R., Phillips, K. C. andWilkinson, J. F. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. -J. Gen. Microbiol.61: 205–218.

    CAS  PubMed  Google Scholar 

  • Zumft, W. G. andMortenson, L. E. 1975. The nitrogen-fixing complex of bacteria. -Bioch. Biophys. Acta416: 1–52.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stouthamer, A.H. Theoretical calculations on the influence of the inorganic nitrogen source on parameters for aerobic growth of microorganisms. Antonie van Leeuwenhoek 43, 351–367 (1977). https://doi.org/10.1007/BF02313762

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02313762

Keywords

Navigation