Skip to main content
Log in

Structural features of muscimol, a potent GABAA receptor agonist, crystal structure and quantum chemicalab initio calculations

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Muscimol, a constituent of the mushroomAmanita muscaria, is a semirigid analogue of the inhibitory neurotransmitter 4-aminobutyric acid (GABA). X-ray structure determinations and quantum chemicalab initio calculations (HF/6-31G*) have been carried out on the muscimol zwitterion. The solid-state conformations of the muscimol zwitterion are calculated to be 1.6–2.2 kcal/mol higher in energy than that of the calculated minimum energy structurein vacuo. A comparison of the calculated and experimental structures indicates that the hydrogen bonding network in the solid state significantly affects the geometry of the molecular structure. This conclusion is supported by results ofab initio calculations on binary complexes between muscimol and an ammonium ion and between muscimol and a methoxide anion, simulating observed hydrogen bonding in the crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krujevic, K.Physiol. Rev. 1974,54, 418–540.

    Google Scholar 

  2. Olsen, R. W.; Venter, J. C.Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties; New York: Liss, 1986.

    Google Scholar 

  3. Barnard, E. A.; Costa, E.Allosteric Modulation of Amino Acid Receptors: Therapeutic Implication; New York: Raven Press, 1989.

    Google Scholar 

  4. Bowery, N. G.; Nistico, G.GABA: Basic Research and Clinical Applications; Rome: Pythagora Press, 1989.

    Google Scholar 

  5. Nistico, G.; Morselli, P. L.; Lloyd, K. G.; Fariello, R. G.; Engel, J.Neurotransmitters, Seizures, and Epilepsy III; New York: Raven Press, 1986.

    Google Scholar 

  6. Krogsgaard-Larsen, P.; FrØlund, B.; JØrgensen, F. S.; Schousboe, A.J. Med. Chem. 1994,37, 2489–2505.

    Article  CAS  Google Scholar 

  7. Eugster, C. H.Fortschr. Chem. Org. Naturstoffe 1969,27, 261–321.

    CAS  Google Scholar 

  8. Krogsgaard-Larsen, P.; Brehm, L.; Schaumburg, K.Acta Chem. Scand. 1981,B35, 311–324.

    CAS  Google Scholar 

  9. Johnston, G. A. R.; Curtis, D. R.; De Groat, W. C.; Duggan, A. W.Biochem. Pharmacol. 1968,17, 2488–2489.

    CAS  Google Scholar 

  10. Krogsgaard-Larsen, P.; Johnston, G. A. R.; Curtis, D. R.; Game, C. J. A.; McCulloch, R. M.J. Neurochem. 1975,25, 803–809.

    CAS  Google Scholar 

  11. Krogsgaard-Larsen, P.; Falch, E.; Hjeds, H.Prog. Med. Chem. 1985,22, 67–120.

    CAS  Google Scholar 

  12. Bowden, K.; Crank, G.; Ross, W. J.J. Chem. Soc. C1968, 172–185.

    Google Scholar 

  13. Krogsgaard-Larsen, P.; Christensen, S. B.Acta Chem. Scand. 1976,B30, 281–282.

    CAS  Google Scholar 

  14. Chiarino, D.; Napoletano, M.; Sala, A.Tetrahedron Lett. 1986,27, 3181–3182.

    Article  CAS  Google Scholar 

  15. Pevarello, P.; Varasi, M.Synth. Comm. 1992,22, 1939–1948, and references cited therein.

    CAS  Google Scholar 

  16. Krogsgaard-Larsen, P.; Hjeds, H.; Curtis, D. R.; Lodge, D.; Johnston, G. A. R. J.Neurochem. 1979,32, 1717–1724.

    CAS  Google Scholar 

  17. Fowler, L. J.; Lovell, D. H.; John, R. A.J. Neurochem. 1983,41, 1751–1754.

    CAS  Google Scholar 

  18. Krogsgaard-Larsen, P.Acta Chem. Scand. 1977,B31, 584–588.

    CAS  Google Scholar 

  19. Krogsgaard-Larsen, P.; Johnston, G. A. R.; Lodge, D.; Curtis, D. R.Nature 1977,268, 53–55.

    Article  CAS  Google Scholar 

  20. Krogsgaard-Larsen, P.; Hjeds, H.; Falch, E.; JØrgensen, F. S.; Nielsen, L.Adv. Drug Res. 1988,17, 381–456.

    CAS  Google Scholar 

  21. Lykkeberg, J.; Krogsgaard-Larsen, P.Acta Chem. Scand. 1976,B30, 781–785.

    CAS  Google Scholar 

  22. Krogsgaard-Larsen, P.; Larsen, A. L. N.; Thyssen, K.Acta Chem. Scand. 1978,B32, 469–477.

    CAS  Google Scholar 

  23. Krogsgaard-Larsen, P.; Nielsen, L.; Falch, E.; Curtis, D. R.J. Med. Chem. 1986,28, 1612–1617.

    Google Scholar 

  24. Brehm, L.; Hjeds, H.; Krogsgaard-Larsen, P.Acta Chem. Scand. 1972,26, 1298–1299.

    CAS  Google Scholar 

  25. Blessing, R. H.Cryst. Rev. 1987,1, 3–58.

    Google Scholar 

  26. Blessing, R. H.J. Appl. Crystallogr. 1989,22, 396–397.

    Article  Google Scholar 

  27. Sheldrick, G. M.Acta Crystallogr. 1990,A46, 467–473.

    CAS  Google Scholar 

  28. Sheldrick, G. M.SHELXL93. Program for the Refinement of Crystal Structures; Göttingen, Germany: University of Göttingen, 1993.

    Google Scholar 

  29. International Tables for Crystallography, Vol. C; Dordrecht: Kluwer, 1992, Tables 4.2.6.8 and 6.1.1.4.

  30. Spartan SGI version 4.0.3 GL Wavefunction, Inc., 18401 von Karman, suite 370, Irvine, CA 92715.

  31. Johnson, C. K., ORTEPII; Report ORNL-5138; Oak Ridge National Laboratory, Tennessee, 1976.

    Google Scholar 

  32. Allen, F. H.; Kennard, O.Chem. Design Automation News 1993,8, 31–37.

    Google Scholar 

  33. Brehm, L.; Krogsgaard-Larsen, P.; Hjeds, H.Acta Chem. Scand. 1974,B28, 308–316.

    Google Scholar 

  34. Brehm, L.; Krogsgaard-Larsen, P.Acta Chem. Scand. 1974,B28, 625–635.

    Google Scholar 

  35. Brehm, L.; Larsen, A. L. N.Acta Crystallogr. 1976,B32, 3336–3339.

    CAS  Google Scholar 

  36. Brehm, L.Acta Crystallogr. 1977,B33, 146–148.

    CAS  Google Scholar 

  37. Kier, L. B.; Truitt, E. B. Jr.Experientia 1970,26, 988–989.

    Article  CAS  Google Scholar 

  38. Andrews, P. R.; Johnston, G. A. R.J. Theor. Biol. 1979,79, 263–273.

    Article  CAS  Google Scholar 

  39. Lipkowitz, K. B.; Gilardi, R. D.; Aprison, M. H.J. Mol. Struct. 1989,195, 65–77.

    Article  CAS  Google Scholar 

  40. Tsuda, M.Mie Med. J. 1992,42, 7–19.

    CAS  Google Scholar 

  41. Tsuda, M.; Takada, T.; Miyasaki, M.; Uda, Y.; Kuzuhara, S.; Kitaura, K.J. Mol. Struct. (Theochem) 1993,280, 261–272.

    Article  Google Scholar 

  42. Boulanger, T.; Vercauteren, D. P.; Durant, F.; André, J.-M.Int. J. Quant. Chem. 1988,15, 149–165.

    CAS  Google Scholar 

  43. Armstrong, D. R.; Breckenridge, R. J.; Suckling, C. J.J. Theor. Biol. 1982,97, 267–276.

    Article  CAS  Google Scholar 

  44. Boulanger, T.; Vercauteren, D. P.; Durant, F.; André, J.-M.J. Theor. Biol. 1987,127, 479–489.

    CAS  Google Scholar 

  45. Cioslowski, J.; Fleischmann, E. D.Croat. Chem. Acta 1993,66, 113–121.

    CAS  Google Scholar 

  46. Lipkowitz, K. B. Personal communication, 1996.

  47. Stewart, J. J. P.Rev. Computational Chem. 1990,1, 45–81.

    Google Scholar 

  48. Krogsgaard-Larsen, P. InAmino Acids as Chemical Transmitters; Fonnum, F., ed.; New York: Plenum Press, 1978, pp. 305–321.

    Google Scholar 

  49. Norrby, P.-O.; Liljefors, T. Unpublished results calculated by using a newly developed MM3 parameter set for 3-isoxazolol; manuscript in preparation, 1997.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brehm, L., Frydenvang, K., Hansen, L.M. et al. Structural features of muscimol, a potent GABAA receptor agonist, crystal structure and quantum chemicalab initio calculations. Struct Chem 8, 443–451 (1997). https://doi.org/10.1007/BF02311703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02311703

Key words

Navigation