Skip to main content
Log in

The role of electric interaction in the retention index cencept. Universal interaction indices for GLC, HPLC and TLC

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

New electric interaction indices are proposed which can universally be used in GLC, HPLC and TLC. These indices can easily be calculated from a variety of the commonly used retention parameters, such as Kováts' retention indices, relative retention times, capacity factors, or RF values, and the average molecular polarizabilities of the reference compounds. Calculation examples for polycyclic aromatic hydrocarbons and n-alkanes are given. Application of the electric interaction indices for studying the retention mechanism is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b:

regression constants (a=slope, b=intercept)

A, B, C, D:

constants depending on the system used

Eint :

interaction energy between two molecules

l1 :

electric interaction index

IP:

first ionization potential

k:

Boltzmann constant (in eq. (1)); also the capacity factor of a solute

r:

distance of interaction

r12 :

relative retention

R:

correlation coefficient

RF :

retardation factor (in TLC)

Rl:

Kováts retention index

T:

(absolute) temperature

X:

retention parameter

α:

average molecular polarizability

λ:

other parameters characterizing the specific interactions of the solute

η:

shape parameter

μ:

dipole moment

a, b:

two molecules

ph:

phase

s:

standard compound

x:

solute

References

  1. E. sz. Kováts, Helv. Chim. Acta41 1915 (1958).

    Article  Google Scholar 

  2. M. Popl, V. Dolansky, J. Mostecky, J. Chromatogr.117, 117 (1976).

    Article  CAS  Google Scholar 

  3. D. L. Vassilaros, R. C. Kong, D. W. Later, M. L. Lee, J. Chromatogr.252, 1 (1982).

    Article  CAS  Google Scholar 

  4. U. Heldt, H. J. K. Köser, J. Chromatogr.192, 107 (1980).

    CAS  Google Scholar 

  5. L. Mathiasson, J. A. Jönsson, A. M. Olsson, L. Haraldson, J. Chromatogr.152, 11 (1978).

    Article  CAS  Google Scholar 

  6. H. Lamparczyk, A. Radecki, Chromatographia18, 615 (1984).

    Article  CAS  Google Scholar 

  7. A. Radecki, H. Lamparczyk, R. Kaliszan, Chromatographia12, 595 (1979).

    Article  CAS  Google Scholar 

  8. S. A. Wise, W. J. Bonnett, F. R. Guenther, W. E. May, J. Chromatogr. Sci.19, 457 (1981).

    CAS  Google Scholar 

  9. L. Rohrschneider, J. Chromatogr.22, 6 (1966).

    Article  CAS  Google Scholar 

  10. P. J. Schoenmakers, H. A. H. Billiet, L. de Galan, Chromatographia15, 205 (1982).

    CAS  Google Scholar 

  11. G. Grimmer, H. Böhnke, J. Ass. Offic. Anal. Chem.58, 725 (1975).

    CAS  Google Scholar 

  12. W. Schmidt, J. Chem. Phys.66, 828 (1977).

    Article  CAS  Google Scholar 

  13. K. J. Miller, J. A. Savchik, J. Amer. Chem. Soc.101, 7206 (1979).

    CAS  Google Scholar 

  14. H. Colin, G. Guiochon, P. Jandera, Anal. Chem.55, 442 (1983).

    CAS  Google Scholar 

  15. K. Jinno, K. Kawasaki, Chromatographia17, 445 (1983).

    CAS  Google Scholar 

  16. E. Clar, W. Schmidt, Tetrahedron35, 1027 (1979).

    CAS  Google Scholar 

  17. R. H. White, J. W. Howard, J. Chromatogr.29, 108 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamparczyk, H. The role of electric interaction in the retention index cencept. Universal interaction indices for GLC, HPLC and TLC. Chromatographia 20, 283–288 (1985). https://doi.org/10.1007/BF02310384

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02310384

Key Words

Navigation