Skip to main content
Log in

The mechanism of the suicidal reductive inactivation of microsomal cytochrome P-450 by halothane

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Anaerobic incubation of NADPH- or sodium dithionite-reduced rat liver microsomes with halothane resulted in a significant inactivation of cytochrome P-450 and parallel loss of the prosthetic group protohaem. When the loss of microsomal haem was measured in the same incubations by two different methods, the pyridine/haemochrome assay and the porphyrin fluorescence technique, halothane was responsible for a loss of haem in both assays, indicating that the tetrapyrrolic structure of haem has been modified by halothane metabolites. Cytochrome P-450 loss by halothane was found to be irreversible, saturable, inhibited by carbon monoxide and showed biphasic, pseudo first-order kinetics, thus fulfilling all the conditions of a typical “suicide” inactivation reaction. Pretreatment of rats with inducers of cytochrome P-450 isoenzymes modified the kinetics of cytochrome P-450 inactivation and the amount of total inactivable enzyme in microsomes. A partition ratio, between metabolic turnover of the substrate and enzyme inactivation, of about 121 was found with microsomes from phenobarbitaltreated rats, indicating that halothane is rather efficient as a suicide substrate of cytochrome P-450. A stable complex between reduced cytochrome P-450 and a halothane metabolite is responsible for the 470 nm peak observed in the difference spectrum of reduced liver microsomes obtained on addition of halothane. An extinction coefficient for this complex was calculated from the amount of enzyme involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahr HJ, King LJ, Nastainczyk W, Ullrich V (1982) The mechanism of reductive dehalogenation of halothane by liver cytochrome P-450. Biochem Pharmacol 31: 383–390

    Article  CAS  PubMed  Google Scholar 

  • Bell GH, Emslie-Smith D, Paterson CR (1980) Hepatic and biliary function. In: Textbook of physiology, tenth edition. Churchill Livingstone, Edinburgh London New York, pp 95–96

    Google Scholar 

  • de Groot H, Harnish U, Noll T (1982) Suicidal inactivation of microsomal cytochrome P-450 by halothane under hypoxic conditions. Biochem Biophys Res Commun 107: 885–891

    PubMed  Google Scholar 

  • Falk JE (1964) Appendix 1. Absorption spectra. In: Falk JE (ed) Porphyrins and metalloporphyrins. Elsevier, Amsterdam, pp 231–246

    Google Scholar 

  • Fiserova-Bergerova V, Dolan DF (1985) Transient inhibitory effect of isoflurane upon oxidative halothane metabolism. Anesth Analg 64: 1171–1177

    CAS  PubMed  Google Scholar 

  • Fujii K, Morio M, Kikuchi H, Ishihara S, Okida M, Ficor F (1984) In vivo spin trap study on anaerobic dehalogenation of halothane. Life Sci 35: 463–468

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt P, Garda H, Stier A, Stockburger M, Van Dyke R (1988) Resonance Raman study of the cytochrome P-450 LM2-halothane intermediate complex. FEBS Lett 237: 15–20

    Article  CAS  PubMed  Google Scholar 

  • Jee RC, Sipes IG, Gandolfi AJ, Brown RB Jr (1980) Factors influencing halothane hepatotoxicity in the rat hypoxic model. Toxicol Appl Pharmacol 52: 267–277

    Article  CAS  PubMed  Google Scholar 

  • Kamath SA, Kummerow FA, Narayan KA (1971) A simple procedure for the isolation of rat liver microsomes. FEBS Lett 17: 90–92

    Article  CAS  PubMed  Google Scholar 

  • Kessler M, Lang H, Sinagowitz E, Rink R, Hoper J (1973) Homeostasis of oxygen supply in liver and kidney. In: Bruley DF, Bicher HI (eds) Oxygen transport to tissue, part A. Plenum Press, New York, pp 351–360

    Google Scholar 

  • Krieter PA, Van Dyke RA (1983) Cytochrome P-450 and halothane metabolism. Decrease in rat liver microsomal P-450 in vitro. Chem-Biol Interact 44: 219–235

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275

    CAS  PubMed  Google Scholar 

  • Manno M (1989a) Suicidal inactivation of haem by halothane. Adv Biosci 76: 107–115

    Google Scholar 

  • Manno M (1989b) Studies on the mechanism of suicidal inactivation of cytochrome P-450 by carbon tetrachloride. PhD thesis, University of Surrey, Guildford, UK, pp 137–153

    Google Scholar 

  • Manno M, Reed C, King LJ, De Matteis F (1988 a) Enzymatic and/or non-enzymatic “suicidal” activation of carbon tetrachloride by haem and cytochrome P-450. Arch Toxicol Suppl 12: 315–317

    CAS  Google Scholar 

  • Manno M, De Matteis F, King LJ (1988b) The mechanism of the suicidal, reductive inactivation of microsomal cytochrome P-450 by carbon tetrachloride. Biochem Pharmacol 37: 1981–1990

    Article  CAS  PubMed  Google Scholar 

  • Manno M, King LJ, De Matteis F (1989a) The degradation of haem by carbon tetrachloride: metabolic activation requires a free axial coordination site on the haem iron and electron donation. Xenobiotica 19: 1023–1035

    CAS  PubMed  Google Scholar 

  • Manno M, Cazzaro S, Rezzadore M (1989b) Suicidal inactivation of cytochrome P-450 by halothane. 5th International Congress of Toxicology, Brighton 16–21 July, Taylor & Francis, Abstracts, p 164

    Google Scholar 

  • Mansuy D (1987) A chemical approach to reactive metabolites. In: Benford DJ, Bridges JW, Gibson GG (eds) Drug metabolism — from molecules to man. Taylor & Francis, London, pp 669–678

    Google Scholar 

  • Morrison GR (1965) Fluorometric microdetermination of heme protein. Anal Chem 37: 1124–1126

    Article  CAS  PubMed  Google Scholar 

  • Mukai S, Morio M, Fujii K, Hanaki C (1977) Volatile metabolites of halothane in the rabbit. Anesthesiology 47: 248–251

    CAS  PubMed  Google Scholar 

  • Nastainczyk W, Ullrich V, Sies H (1978) Effect of oxygen concentration on the reaction of halothane with cytochrome P-450 in rat liver microsomes and isolated perfused rat liver. Biochem Pharmacol 27: 387–392

    Article  CAS  PubMed  Google Scholar 

  • Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239: 2370–2378

    CAS  PubMed  Google Scholar 

  • Ortiz de Montellano PR, Mico BA (1981) Destruction of cytochrome P-450 by allylisopropylacetamide is a suicidal process. Arch Biochem Biophys 206: 43–50

    CAS  PubMed  Google Scholar 

  • Paul KG, Theorell H, Akeson A (1953) The molar light absorption of pyridine ferroprotoporphyrin (pyridine haemochromogen). Acta Chem Scand 7: 1284–1287

    CAS  Google Scholar 

  • Rando RR (1974) Chemistry and enzymology of kcat inhibitors. Science 185: 320–324

    CAS  PubMed  Google Scholar 

  • Rehder K, Forbes J, Alter H, Hessler O, Stier A (1967) Halothane biotransformation in man: a quantitative study. Anesthesiology 28: 711–715

    CAS  PubMed  Google Scholar 

  • Seifter S, Englard S (1988) Energy metabolism. In: Arias IM, Jacoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver biology and pathobiology, second edition. Raven Press, New York, pp 279–315

    Google Scholar 

  • Sharp JH, Trudell JR, Cohen EN (1979) Volatile metabolites and decomposition products of halothane in man. Anesthesiology 50 2–8

    CAS  PubMed  Google Scholar 

  • Stier A (1964) Trifluoroacetic acid as a metabolite of halothane. Biochem Pharmacol 13: 1544

    Article  CAS  PubMed  Google Scholar 

  • Tomasi A, Billing S, Garner A, Slater TF, Albano E (1983) The metab olism of halothane by hepatocytes: a comparison between free radical spin trapping and lipid peroxidation in relation to cell damage Chem-Biol Interact 46: 353–368

    Article  CAS  PubMed  Google Scholar 

  • Waley SG (1980) Kinetics of suicide substrates. Biochem J 185: 771–773

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manno, M., Cazzaro, S. & Rezzadore, M. The mechanism of the suicidal reductive inactivation of microsomal cytochrome P-450 by halothane. Arch Toxicol 65, 191–198 (1991). https://doi.org/10.1007/BF02307308

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02307308

Key words

Navigation