Skip to main content
Log in

Somatofugal axonal atrophy precedes development of axonal degeneration in acrylamide neuropathy

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Somatofugal axonal atrophy is part of the neuronal perikaryal response to axonal injury (axon reaction). Chronic administration of acrylamide (AC) produces proximal atrophy in virtually all sensory fibers in lumbar dorsal root ganglion (DRG) despite the presence of many intact axons in the distal portion of the sciatic nerve. This suggests that the development of axonal atrophy in AC-intoxicated animals is not solely due to a toxic chemical-induced axonal degeneration (axotomy). In this study, we asked whether axonal atrophy arises before onset of axonal degeneration. Rats were given a single intraperitoneal (i.p.) high dose of AC (75 mg/kg), which blocks retrograde axonal transport, followed by daily intraperitoneal injections (30 mg/kg, for 4 days). At 5 days, sensory fibers in the L4 and L5 DRG appeared smaller in caliber and less circular in shape compared to fibers from age-matched normal animals. Axonal diameters of sensory fibers in the L5 dorsal root were significantly (p<0.05) reduced at distances up to 2 mm from the DRG. Quantitative electron microscopy demonstrated that the reduction in caliber was due to a decreased neurofilament (NF) content. Axonal degeneration was not present in the distal portion of both centrally (dorsal root) and peripherally (sciatic nerve) projecting sensory fibers at this time, although primary afferent terminals in muscles of the hindfeet were packed with NFs. The somatofugal progression of the atrophy was evident following more prolonged exposures (10–28 days). It is suggested that AC produces somatofugal axonal atrophy by inhibiting the delivery of a retrogradely transported target-derived “trophic” signal to the neuronal perikaryon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldkogius H, Svensson M (1988) Effect on the rat hypoglossal nucleus of vinblastine and colchicine applied to the intact or transected hypoglossal nerve. Exp Neurol 99: 461–473

    Google Scholar 

  • Bisby M, Redshaw JD (1987) Acrylamide neuropathy: changes in the composition of proteins of fast axonal transport resemble those observed in regenerating axons. J Neurochem 48: 924–928

    CAS  PubMed  Google Scholar 

  • Cavanagh JB (1964) The significance of the “dying back” process in human and experimental neurological diseases. Int Rev Exp Pathol 3: 219–267

    CAS  PubMed  Google Scholar 

  • Cavanagh JB (1982) The pathokinetics of acrylamide intoxication: a reappraisal of the problem. Neuropathol Appl Neurobiol 8: 315–336

    CAS  PubMed  Google Scholar 

  • Cavanagh JB, Gysbers MF (1983) Ultrastructural features of the Purkinje cell damage caused by acrylamide in the rat: a new phenomenon in cellular neuropathology. J Neurocytol 12: 413–437

    Article  CAS  PubMed  Google Scholar 

  • Chretien M, Patey G, Souyri F, Droz B (1981) “Acrylamide-induced” neuropathy and impairment of axonal transport of proteins. II. Abnormal accumulations of smooth endoplasmic reticulum as sites of focal retention of fast transported proteins. Electron microscopic radioautographic study. Brain Res 205: 15–28

    Article  CAS  PubMed  Google Scholar 

  • Cull RE (1975) Role of axonal transport in maintaining central synaptic connections. Exp Brain Res 24: 97–101

    Article  CAS  PubMed  Google Scholar 

  • Edstrom A, Hanson M, Wallin M, Cederholm B (1979) Inhibition of fast axonal transport and microtubule polymerization in vitrolcolchicine and colchicine. Acta Physiol Scand 107: 233–237

    CAS  PubMed  Google Scholar 

  • Friede R, Samorajski T (1970) Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec 176: 379–388

    Google Scholar 

  • Fullerton PM, Barnes JM (1966) Peripheral neuropathy in rats produced by acrylamide. Br J Ind Med 23: 210–221

    CAS  PubMed  Google Scholar 

  • Gold BG, Halleck MM (1989) Axonal degeneration and axonal caliber alterations following combined β,β′-iminodipropionitrile (IDPN) and acrylamide administration. J Neuropathol Exp Neurol 48: 653–668

    CAS  PubMed  Google Scholar 

  • Gold BG, Griffin JW, Price DL (1985) Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration. J Neurosci 5: 1755–1768

    CAS  PubMed  Google Scholar 

  • Gold BG, Griffin JW, Pestronk A, Hoffman PN, Stanley EF, Price DL (1986) Somatofugal axonal atrophy produced by botulinum toxin. Soc Neurosci Abstr 12: 1108

    Google Scholar 

  • Gold BG, Price DL, Griffin JW, Rosenfeld J, Hoffman PN, Sternberger NH, Sternberger LA (1988) Neurofilament antigens in acrylamide neuropathy. J Neuropathol Exp Neurol 47: 145–157

    CAS  PubMed  Google Scholar 

  • Gold BG, Mobley WC, Matheson SF (1991) Regulation of axonal caliber, neurofilament content and nuclear localization in mature sensory neurons by nerve growth factor. J Neurosci 11: 943–955

    CAS  PubMed  Google Scholar 

  • Goldstein ME, Copper MS, Bruce J, Carden MJ, Lee VM-Y, Schlaepfer WW (1987) Phosphorylation of neurofilament proteins and chromatolysis following transection of rat sciatic nerve. J Neurosci 7: 1566–1594

    Google Scholar 

  • Goldstein ME, Weiss SR, Lassarini RA, Shneidman PS, Lees JF, Schlaepfer WW (1988) mRNA levels of all three neurofilament proteins decline following nerve transection. Mol Brain Res 3: 287–292

    Article  CAS  Google Scholar 

  • Griffin JW, Gold BG, Price DL (1987) Somatofugal axonal atrophy precedes axonal degeneration in acrylamide neuropathy. Soc Neurosci Abstr 13: 1503

    Google Scholar 

  • Hanson M, Edstrom A (1978) Fast axonal transport: effect of antimitotic drugs and inhibitors of energy metabolism on the rate and amount of transported protein in frog sciatic nerves. J Neurobiol 8: 97–108

    Google Scholar 

  • Hashimoto K, Aldridge WN (1970) Biochemical studies on acrylamide: a neurotoxic agent. Biochem Pharmacol 19: 2592–2604

    Article  Google Scholar 

  • Hoffman PN, Lasek RJ (1980) Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change. Brain Res 202: 317–333

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PN, Griffin JW, Price DL (1984) Control of axonal caliber by neurofilament transport. J Cell Biol 99: 705–714

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PN, Griffin JW, Gold BG, Price DL (1985a) Slowing of neurofilament transport and the radial growth of developing nerve fibers. J Neurosci 5: 2920–2929

    CAS  PubMed  Google Scholar 

  • Hoffman PN, Thompson GW, Griffin JW, Price DL (1985b) Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers. J Cell Biol 101: 1332–1340

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PN, Cleveland DW, Griffin JW, Landes PW, Cowan NJ, Price DL (1987) Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci USA 84: 3472–3476

    CAS  PubMed  Google Scholar 

  • Jakobsen J, Sidenius P (1983) Early and dose-dependent decrease of retrograde axonal transport in acrylamide-intoxicated rats. J Neurochem 40: 447–454

    CAS  PubMed  Google Scholar 

  • Jones HB, Cavanagh JB (1984) The evolution of intracellular response to acrylamide in rat spinal ganglion neurons. Neuropathol Appl Neurobiol 10: 101–121

    CAS  PubMed  Google Scholar 

  • Malik MN, Meyers LA, Iqbal K, Sheikh AM, Scott L, Wisniewski HY (1981) Calcium activated proteolysis of fibrous proteins in centra nervous system. Life Sci 29: 795–802

    Article  CAS  PubMed  Google Scholar 

  • Miller MS, Spencer PS (1984) Single doses of acrylamide reduce retrograde transport velocity. J Neurochem 43: 1401–1408

    CAS  PubMed  Google Scholar 

  • Miller MS, Miller MJ, Burks TF, Sipes IG (1983) Altered retrogradaxonal transport of nerve growth factor after single and repeated doses of acrylamide in the rat. Toxicol Appl Pharmacol 69: 96–101

    Article  CAS  PubMed  Google Scholar 

  • Oblinger MM, Lasek RJ (1988) Axotomy-induced alterations in the synthesis and transport of neurofilaments and microtubules in dorsa root ganglion cells. J Neurosci 8: 1747–1758

    CAS  PubMed  Google Scholar 

  • Pfeiffer G, Friede RL (1985) A morphometric study of nerve fiber atrophy in rat spinal roots. J Neuropathol Exp Neurol 44: 546–556

    CAS  PubMed  Google Scholar 

  • Prineas J (1969) The pathogenesis of dying-back polyneuropathies. Par II. An ultrastructural study of experimental acrylamide intoxication in the cat. J Neuropathol Exp Neurol 28: 598–621

    CAS  PubMed  Google Scholar 

  • Richardson PM, Verge VMK (1986) The induction of a regenerativ propensity in sensory neurons following peripheral axonal injury J Neurocytol 15: 585–594

    Article  CAS  PubMed  Google Scholar 

  • Roots BI (1983) Neurofilament accumulation induced in synapses by leupeptin. Science 221: 541–548

    Google Scholar 

  • Rosenfeld J, Dorman ME, Griffin JW, Gold BG, Sternberger LA, Sterrberger NH, Price DL (1987) Distribution of neurofilament antigen after axonal injury. J Neuropathol Exp Neurol 46: 269–282

    CAS  PubMed  Google Scholar 

  • Sahenk Z, Lasek RJ (1988) Inhibition of proteolysis blocks anterograde retrograde conversion of axonally transported vesicles. Brain Re 460: 199–203

    CAS  Google Scholar 

  • Schaumburg HH, Wisniewski HM, Spencer PS (1974) Ultrastructura studies of the dying-back process. I. Peripheral nerve terminal and axon degeneration in systemic acrylamide intoxication. J Neu ropathol Exp Neurol 3: 260–284

    Google Scholar 

  • Spencer PS, Schaumburg HH (1974) A review of acrylamide neurotoxic ity. Part II. Experimental animal neurotoxicity and pathologic mech anisms. Can J Neurol Sci 1: 152–169

    CAS  PubMed  Google Scholar 

  • Spencer PS, Schaumburg HH (1977) Ultrastructural studies of the dying back process. III. The evolution of experimental peripheral gian axonal degeneration. J Neuropathol Exp Neurol 36: 276–299

    CAS  PubMed  Google Scholar 

  • Sterman AB (1983) Altered sensory ganglia in acrylamide neuropathy Quantitative evidence of neuronal reorganization. J Neuropathol Ex Neurol 42: 166–176

    CAS  Google Scholar 

  • Sterman AB (1984) Acrylamide-induced remodelling of perikarya in n superior cervical ganglia. Neuropathol Appl Neurobiol 10: 221–23.

    CAS  PubMed  Google Scholar 

  • Tanii H, Hayashi M, Hashimoto K (1988) Neurofilament degradation: the nervous system of rats intoxicated with acrylamide, related compounds or 2,5-hexanedione. Arch Toxicol 62: 70–75

    Article  CAS  PubMed  Google Scholar 

  • Tetzlaff W, Bisby MA, Kreutzberg GW (1988) Changes in cytoskeleta proteins in the rat facial nucleus following axotomy. J Neurosci 8 3131–3189

    Google Scholar 

  • Vallee RB, Shpetner HS, Paschal BM (1989) The role of dynein in retrograde axonal transport. Trends Neurosci 12: 66–70

    Article  CAS  PubMed  Google Scholar 

  • Verge VMK, Tetzlaff W, Bisby MA, Richardson PM (1990) Influence of nerve growth factor on neurofilament gene expression in matur primary sensory neurons. J Neurosci 10: 2018–2025

    CAS  PubMed  Google Scholar 

  • Wong J, Oblinger MM (1987) Changes in neurofilament gene expression occurs after axotomy of dorsal root ganglion neurons: an in situ hybridization study. Metab Brain Dis 2: 291–308

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gold, B.G., Griffin, J.W. & Price, D.L. Somatofugal axonal atrophy precedes development of axonal degeneration in acrylamide neuropathy. Arch Toxicol 66, 57–66 (1992). https://doi.org/10.1007/BF02307271

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02307271

Key words

Navigation