Skip to main content
Log in

Absorption of horse-radish peroxidase by the conjunctival epithelium of monkeys and rabbits

  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Horse-radish peroxidase was instilled into the conjunctival sac of rabbits and Cynomolgus monkeys. After an interval of 5, 30 or 60 min the conjunctival epithelium was studied by electron microscopy. The tracer was found to be absorbed predominantly by type-V cells, which are rich in mitochondria; this process was found to occur more rapidly in the rabbit than in the monkey. The particles were primarily incorporated into pinocytotic vesicles and phagosomes and were then either digested by phagolysosomes or transported through the basal portion of the surface epithelial cells into the expanding intercellular spaces distal to the junctional complexes.

Zusammenfassung

Meerrettichperoxydase (HRP) wurde in den Conjunctivalsack von Kaninchen und Cynomolgusaffen eingebracht und die Resorption morphologisch verfolgt. Nach verschiedenen zeitlichen Intervallen (5, 30 und 60 min) wurde das Conjunctivaepithel elektronenmikroskopisch untersucht. Es zeigte sich, daß HRP-Moleküle vornehmlich von Typ V-Zellen, die besonders reich an Mitochondrien sind, durch Pinozytose- oder Phagozytosevorgänge ins apikale Zytoplasma eingeschleust werden. Die Tracerpartikel werden anschließend entweder in Phagolysosomen verdaut oder in die sich stark erweiternden Interzellularspalten, die distal von den Zonulae occludentes liegen, transportiert. Diese Transportprozesse laufen beim Kaninchen wesentlich rascher ab als beim Affen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindner K (1921) Über die Topographie der parasitären Bindehautkeime. Arch Ophthalmol 105: 726

    Google Scholar 

  2. Howard HJ (1924) Role of the epithelial cell in conjunctival and corneal infections. Am J Ophthalmol 7: 909

    Google Scholar 

  3. Latkovic S, Nilson SEG (1979) Phagocytosis of latex microspheres by the epithelial cells of the guinea pig conjunctiva. Acta Ophthalmol (Copenh) 57: 582–590

    CAS  Google Scholar 

  4. Karnovsky MJ, Graham RC (1978) Peroxydasereaktion. In: Geyer G (ed) Ultrahistochemie, 2. Aufl. Leipzig

  5. Greiner JV, Gladstone L, Covington HJ, Korb DR, Weismann THA, Allansmith MR (1980) Branching of microvilli in the human conjunctival epithelium. Arch Ophthalmol 98 (7): 1253–1255

    CAS  PubMed  Google Scholar 

  6. Pfister R (1975) The normal surface of conjunctiva epithelium. A scanning electron microscopic study. Invest Ophthalmol 14: 267–279

    CAS  PubMed  Google Scholar 

  7. Rohen JW, Steuhl P (1982) Specialized cell types and their regional distribution in the conjunctival epithelium of the Cynomolgus monkey. Graefe's Arch Clin Exp Ophthalmol 218: 59–63

    CAS  Google Scholar 

  8. Sørensen T, Jensen FT (1979) Conjunctival transport of technetium-99m pertechnetate. Acta Ophthalmol 57: 691–697

    Google Scholar 

  9. Maurice DM (1973) Electrical potential and ion transport across the conjunctiva. Exp Eye Res 15: 527–532

    Article  CAS  PubMed  Google Scholar 

  10. Ursing J (1967) On the disappearance of radiosodium ions from conjunctival and sub-conjunctival desposits in the rabbit. Berlinska Boktrycheriet Lund

    Google Scholar 

  11. Tener C, Rácz P, Rédey B (1971) Significance of the “epithelial phase” in experimental salmonella conjunctivitis. Acta Microbiol Acad Sci Hung 18: 167–177

    Google Scholar 

  12. Zinianski MC, Dawson CR, Togni B (1974) Epithelial cell phagocytosis of Listeria monocytogenes in the conjunctiva. Invest Ophthalmol 13: 623–626

    Google Scholar 

  13. Rácz P, Tenner K (1963) Die Bedeutung des intrazellulären Wachstums der pathogenen Mikroorganismen bei der Keratokonjunktivitis shigellosa and listeriosa. Verh Dtsch Ges Pathol 47: 403–406

    PubMed  Google Scholar 

  14. Hazlett LD, Wells P, Spann B, Berk RS (1980) Penetration of the unwounded immature mouse cornea and conjunctiva by Pseudomonas: SEM-TEM analysis. Invest Ophthalmol Vis Sci 19: 694–697

    CAS  PubMed  Google Scholar 

  15. Stossel TP (1974) Phagocytosis. N Engl J Med 290: 717–723, 774–780

    CAS  PubMed  Google Scholar 

  16. Iwata T (1976) Cytochemical studies of endogenous peroxidase in conjunctival and corneal epithelial cells. Invest Ophthalmol 15: 297–301

    CAS  PubMed  Google Scholar 

  17. Iwata T, Ohkawa KI, Uyama M (1976) The fine structural localization of peroxidase activity in goblet cells of the conjunctival epithelium of rats. Invest Ophthalmol 15: 40–44

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Academy of Science and Literature, Mainz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steuhl, P., Rohen, J.W. Absorption of horse-radish peroxidase by the conjunctival epithelium of monkeys and rabbits. Graefe's Arch Clin Exp Ophthalmol 220, 13–18 (1983). https://doi.org/10.1007/BF02307010

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02307010

Keywords

Navigation