Skip to main content
Log in

Determination of Structural and Morphological Parameters of Human Bulbar Conjunctiva from Optical Diffuse Reflectance Spectra

  • Published:
Journal of Applied Spectroscopy Aims and scope

We have developed a method for on-the-fl y retrieval of the volume concentration of blood vessels, the average diameter of the blood vessels, the blood oxygenation level, and the molar concentrations of chromophores in the bulbar conjunctiva from its diffuse reflectance spectra, measured when the radiation delivery and detection channels are spatially separated. The relationship between the diffuse reflectance spectrum of the conjunctiva and its unknown parameters is described in terms of an analytical model, constructed on the basis of a highly accurate approximation analog of the Monte Carlo method. We have studied the effect of localization of hemoglobin in erythrocytes and localization of erythrocytes in the blood vessels on the power of the retrieval of structural and morphological parameters for the conjunctiva. We developed a device for obtaining video images of the conjunctiva and contactless measurements of its diffuse reflectance spectrum. By comparing simulated diffuse reflectance spectra of the conjunctiva with the experimental measurements, we established a set of chromophores which must be taken into account in the model for reproducing the experimental data within the measurement error. We observed absorption bands for neuroglobin in the experimental spectra, and provided a theoretical basis for the possibility of determining its absolute concentrations in the conjunctiva. We have shown that our method can detect low bilirubin concentrations in blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, J. Anat., 206, No. 4, 319–348 (2005).

    Article  Google Scholar 

  2. K. McGeechan, G. Liew, P. Macaskill, L. Irwig, R. Klein, B. E. Klein, J. J. Wang, P. Mitchell, J. R. Vingerling, P. T. Dejong, J. C. Witteman, M. M. Breteler, J. Shaw, P. Zimmet, and T. Y. Wong, Ann. Intern. Med., 151, No. 6, 404–413 (2009).

    Article  Google Scholar 

  3. R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, and A. J. Welch, J. Biomed. Opt., 16, No. 7, 077008-1–077008-14 (2001).

  4. M. Hammer and D. Schweitzer, Phys. Med. Biol., 47, No. 2, 179–191 (2002).

    Article  Google Scholar 

  5. J. C. Ramella-Roman, S. A. Mathews, H. Kandimalla, A. Nabili, D. D. Duncan, S. A. D’Anna, S. M. Shah, and Q. D. Nguyen, Opt. Express, 16, No. 9, 6170–6182 (2008).

    Article  ADS  Google Scholar 

  6. V. F. Shmyreva, S. Yu. Petrov, A. A. Antonov, V. I. Siplivyi, A. A. Stratonnikov, T. A. Savel′eva, S. A. Shevchik, and A. V. Ryabova, Glaukoma, 7, No. 2, 9–14 (2008).

  7. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafi to, and H. F. Zhang, Opt. Express, 18, No. 14, 3967–3972 (2010).

  8. D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, Eye (London), 25, No. 3, 309–320 (2011).

    Article  Google Scholar 

  9. A. Calcagni, J. M. Gibson, I. B. Styles, E. Claridge, and F. Orihuela-Espina, Eye (London), 25, No. 12, 1562–1569 (2011).

    Article  Google Scholar 

  10. O. Kim, J. McMurdy, G. Jay, C. Lines, G. Crawford, and M. Alber, Physiol. Rep., 2, No. 1, e00192-1–e00192-14 (2014).

  11. T. Kurata, Z. Li, S. Oda, H. Kawahira, and H. Haneishi, Biomed. Opt. Express, 6, No. 5, 1616–1631 (2015).

    Article  Google Scholar 

  12. K. A. Firn and B. Khoobehi, Int. J. Ophthalmic. Res., 1, No. 2, 48–58 (2015).

    Article  Google Scholar 

  13. S. A. Lisenko and M. M. Kugeiko, Izmerit. Tekh., No. 11, 68–73 (2013).

  14. S. A. Lisenko, M. M. Kugeiko, V. A. Firago, and A. N. Sobchuk, Zh. Prikl. Spektrosk., 81, No. 1, 120–128 (2014) [S. A. Lisenko, M. M. Kugeiko, V. A. Firago, and A. N. Sobchuk, J. Appl. Spectrosc., 81, 127–133 (2014) (English translation)].

  15. S. A. Lisenko, M. M. Kugeiko, V. A. Firago, and A. N. Sobchuk, Kvantovaya Élektron., 44, No. 1, 69–75 (2014).

    Article  Google Scholar 

  16. S. A. Lisenko and M. M. Kugeiko, Kvantovaya Élektron., 44, No. 3, 252–258 (2014).

    Article  Google Scholar 

  17. S. A. Lisenko and M. M. Kugeiko, Zh. Prikl. Spektrosk., 81, No. 3, 423–430 (2014) [S. A. Lisenko and M. M. Kugeiko, J. Appl. Spectrosc., 81, 422–449 (2014) (English translation)].

  18. L. Wang, S. L. Jacques, and L. Zheng, Comput. Method. Program. Biomed., 47, 131–146 (1995)

    Article  Google Scholar 

  19. M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, Phys. Med. Biol., 40, No. 6, 963–978 (1995).

    Article  Google Scholar 

  20. A. N. Bashkatov, É. A. Genina, V. I. Kochubei, and V. V. Tuchin, Opt. Spektrosk., 109, No. 2, 226–234 (2010).

    Google Scholar 

  21. S. L. Jacques, Phys. Med. Biol., 58, No. 11, R37–R61 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  22. P. O. Rol, Optics for Transscleral Laser Applications, Dissertation, Doctor of Natural Sciences, Institute of Biomedical Engineering, Zürich, Switzerland (1992).

  23. S. L. Jacques and B. W. Pogue, J. Biomed. Opt., 13, No. 4, 041302-1–041302-19 (2008).

  24. É. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, and V. V. Tuchin, Kvantovaya Élektron., 36, No. 12, 1119–1124 (2006).

    Article  Google Scholar 

  25. A. F. McDonagh, G. Agati, F. Fusi, and R. Pratesi, Photochem. Photobiol., 50, No. 3, 305–319 (1989).

    Article  Google Scholar 

  26. G. Agati, F. Fusi, and R. Pratesi, J. Photochem. Photobiol. B: Biol., 17, No. 2, 173–180 (1993).

    Article  Google Scholar 

  27. V. V. Barun and A. P. Ivanov, Opt. Spektr., 96, No. 6, 1019–1024 (2004).

    Article  Google Scholar 

  28. A. Talsma, B. Chance, and R. Graaff, J. Opt. Soc. Am. A, 18, No. 4, 932–939 (2001).

    Article  ADS  Google Scholar 

  29. S. L. Jacques, R. D. Glickman, and J. A. Schwartz, Proc. SPIE, 2681, 468–477 (1996).

    Article  ADS  Google Scholar 

  30. L. Lianzhi, J. Haiwei, Z. Chao, X. Tao, L. Guofu, F. Chongluo, and Y. Huachao, Chin. Sci. Bull. 50, No. 16, 1708–1713 (2005).

    Article  Google Scholar 

  31. http://omlc.ogi.edu/spectra/hemoglobin/index.html.

  32. K. Toda, M. A. Pathak, J. A. Parrish, T. B. Fitzpatrick, and W. C. Quevedo, Jr., Nature: New Biology, 236, No. 5, 143–145 (1972).

    Google Scholar 

  33. S. A. Lisenko and M. M. Kugeiko, Zh. Prikl. Spektrosk., 80, No. 3, 432–441 (2013) [S. A. Lisenko and M. M. Kugeiko, J. Appl. Spectrosc., 80, 419–428 (2013) (English translation)].

  34. V. N. Lopatin, A. V. Priezzhev, and A. D. Aponasenko, Light Scattering Methods in Analysis of Disperse Biological Media [in Russian], Fizmatlit, Moscow (2004).

  35. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes. The Art of Scientifi c Computing, Third Edition, Cambridge University Press, New York (2007).

  36. S. A. Lisenko, M. M. Kugeiko, and A. M. Lisenkova, Opt. Spektrosk., 115, N. 5, 184–191 (2013).

  37. Y. Sun, K. Jin, X. O. Mao, Y. Zhu, and D. A. Greenberg, Proc. Natl. Acad. Sci. USA, 98, No. 26, 15306–15311 (2001).

    Article  ADS  Google Scholar 

  38. S. Raychaudhuri, J. Skommer, K. Henty, N. Birch, and T. Brittain, Apoptosis, 15, No. 4, 401–411 (2010).

    Article  Google Scholar 

  39. S. N. El-Beshbishi, K. E. Shattuck, A. A. Mohammad, and J. R. Petersen, Clin. Chem., 55, No. 7, 71280–71287 (2009).

    Article  Google Scholar 

  40. A. S. Kumar, J. Clark, and F. R. Beyette, Proc. SPIE, 7169, 716908-1–716908-12 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lisenko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 4, pp. 606–615, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisenko, S.A., Firago, V.A., Kugeiko, M.M. et al. Determination of Structural and Morphological Parameters of Human Bulbar Conjunctiva from Optical Diffuse Reflectance Spectra. J Appl Spectrosc 83, 617–626 (2016). https://doi.org/10.1007/s10812-016-0337-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0337-7

Keywords

Navigation