Skip to main content
Log in

The mathematical modelling of a production scale sequential continuous chromatographic refiner unit

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

A plate to plate mathematical model of a sequential gas-liquid chromatographic separator used for the continuous separation of volatile organic mixtures has been extended to include theoretically determined temperature, pressure and concentration effects. A comparison has been made of predicted values with experimental results obtained on a 12 column (7.6 cm o.d. ×61 cm) sequential continuous chromatograph when separating an equivolume mixture of Arklone P-Genklene P at feed rates of up to 1400 cm3 hr−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ao, a1 :

constants [11]

Ap :

surface area of theoretical plate

c:

solute concentration in gas phase

cf :

feed concentration in gas phase

Cs, Cm :

resistance to mass transfer in stationary and mobile phases

df :

thickness of stationary phase liquid film

dp :

mean particle diameter

Dm :

mobile phase molecular diffusivity

Ds :

stationary phase molecular diffusivity

G:

gas phase volumetric flow rate

G′:

gas phase volumetric flow rate corrected for presence of solute molecules

hi :

heat of solution of solute in liquid phase

H:

height equivalent to theoretical plate

K :

partial coefficient at infinite dilution

Mi, Mii :

relative molecular masses of solutes

Mv :

solute molar volume at operating temperatures

q:

solute concentration in liquid phase

q′:

configuration factor dependent upon shape of stationary phase layer

R:

retention ration=elution volume/total bed volume

SLSp :

specific heats of liquid and solid phases

u:

average interstitial gas phase velocity

V:

volume of gas passed through plate in terms of “plate volumes”

V1, V2 :

volumes of liquid phase and solid support

Vn :

effective plate volume=(Vn(G)+KVn(L))

Vn(G) :

gas phase volume in plate n

Vn(L) :

liquid phase volume in plate n

w:

factor to allow for non uniformity of velocity profile

Xgn :

concentration of solute in gas phase in plate n

z:

composite thermal conductivity of packed bed

ψ:

operating mobile phase/stationary phase velocity ratio

α c β c :

constants [18]

θ:

excess temperature of plate above its surroundings

ρLρp :

densities of liquid phase and solid support

γ′:

labyrinth factor

λ:

eddy diffusion factor

References

  1. C. T. Sciance andO. K. Crosser, A.I.Ch.E. Journal12, 100 (1966).

    Google Scholar 

  2. S. Al-Madfai, Ph. D. Thesis, Univ. of Birmingham, 1969.

  3. P. Rony, Separation Sci.3, 239 (1968);3, 357 (1968);5, 121 (1970).

    Google Scholar 

  4. G. R. Fitch, M. E. Probert andP. F. Tiley, J. Chem. Soc. 4875 (1962).

  5. D. H. Huntington, Ph.D. Thesis, Univ. of Birmingham, 1967.

  6. P. E. Barker andD. H. Huntington, Dechema Monograph62, 153 (1969).

    Google Scholar 

  7. P. E. Barker, “Preparative Gas Chromatography”,A. Zlatkis, Ed., Wiley-Interscience, London, 1971, p. 135.

    Google Scholar 

  8. L. Alders, “Liquid Liquid Extraction”, Elsevier, Amsterdam, 1959, (2nd edition).

    Google Scholar 

  9. P. Tiley, J. Appl. Chem.17, 131 (1967).

    Google Scholar 

  10. D. Lloyd, Ph. D. Thesis, Univ. of Birmingham, 1963.

  11. A. B. Sunal, Ph. D. Thesis, Univ. of Aston in Birmingham, 1973.

  12. R. E. Deeble, Ph. D. Thesis, Univ. of Aston in Birmingham, 1974.

  13. P. E. Barker andR. E. Deeble, Chromatographia8, 67 (1975).

    Google Scholar 

  14. D. M. Bell, Ph. D. Thesis, Univ. of Aston in Birmingham, 1977.

  15. P. E. Barker, D. M. Bell andR. E. Deeble, Chromatographia12, 277 (1979).

    Google Scholar 

  16. S. Ergun, Chem. Eng. Prog.48, 89 (1952).

    Google Scholar 

  17. R. P. W. Scott, Anal Chem.35, 481 (1963).

    Google Scholar 

  18. J. C. Giddings, “Dynamics of Chromatography”, Part 1, M. Dekker, New York, 1965, pp. 323.

    Google Scholar 

  19. E. Bayer, K. P. Hupe andH. Mack, Anal. Chem.35, 492 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, P.E., Bell, D.M. & Deeble, R.E. The mathematical modelling of a production scale sequential continuous chromatographic refiner unit. Chromatographia 13, 334–338 (1980). https://doi.org/10.1007/BF02290900

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02290900

Key Words

Navigation