Skip to main content
Log in

Isocratic high-performance liquid chromatographic determination of plasma adenosine

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Due to manifold physiological and cardioprotective actions of adenosine, the demand for a simple but accurate method to determine its concentration in plasma is increasing. The aim of this study was firstly to develop a simple isocratic method instead of the gradient elution or peak-shifting techniques used earlier and secondly to check conflicting data on the composition of “stop-solution”, added to the sample in order to prevent changes in adenosine concentration. Isocratic elution improved signal to noise ratio and concentrations of 100 μmol L−1 dipyridamole and 2.5 μmol L−1 erythro-9(2-hydroxy-3-nonyl)adenine in the blood sample effectively prevented both adenosine formation and degradation, even without the use of a 5′-ecto-nucleotidase inhibitor. Lowering the concentration of dipyridamole to 25 μmol L−1 caused more than a tenfold increase of adenosine concentration in two out of five cases and even 100 μmol L−1 dipyridamole alone is not sufficient to inhibit adenosine deaminase in blood samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Möser, J. Schrader, A. Deussen, Am. J. Physiol.256, C799 (1989).

    Google Scholar 

  2. J. Ontyd, J. Schrader, J. Chromatogr.307, 404 (1984).

    Google Scholar 

  3. S. C. Herrmann, E. O. Feigl, J. Chromatogr.574, 247 (1992).

    Google Scholar 

  4. J. C. Shyrock, M. T. Boykin, J. A. Hill, L. Belardinelli, Am. J. Physiol.256, H1232 (1990).

    Google Scholar 

  5. J. P. Manfredi, H. V. Sparks, Jr., Am. J. Physiol.243, H536 (1982).

    Google Scholar 

  6. L. J. Findley, M. Boykin, T. Fallon, L. Belardinelli, J. Appl. Physiol.64/2, 556 (1988).

    Google Scholar 

  7. R. A. Hartwick, P. R. Brown, J. Chromatogr.126, 679 (1976).

    Google Scholar 

  8. R. A. Hartwick, A. M. Krstulovic, P. R. Brown, J. Chromatogr.186, 659 (1979).

    Google Scholar 

  9. J. E. McKenzie, R. P. Steffen, F. J. Haddy, Am. J. Physiol.252, H204 (1987).

    Google Scholar 

  10. A. Pelleg, R. S. Porter, Pharmacology10, 157 (1990).

    Google Scholar 

  11. L. Belardinelli, J. Linden, R. M. Berne, Progress in Cardiovascular Diseases33/1, 73 (1989).

    Google Scholar 

  12. B. D. Bertolet, J. A. Hill, Chest104, 1860 (1993).

    Google Scholar 

  13. R. E. Klabunde, D. G. Althouse, Life Sci.28, 2631 (1981).

    Google Scholar 

  14. J. Schrader, R. M. Berne, R. Rubio, Am. J. Physiol.223, 159 (1972).

    Google Scholar 

  15. C. W. Hamm, W. Kupper, R. Bredehorst, H. Hilz, W. Bleifeld, Cardiovascular Res.22, 236 (1988).

    Google Scholar 

  16. V. Kékesi, “Current problems of cardiovascular surgery”, Z. Szabó, ed., Academic Press, Budapest, 1986, p. 99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huszár, É., Barát, E. & Kollai, M. Isocratic high-performance liquid chromatographic determination of plasma adenosine. Chromatographia 42, 318–322 (1996). https://doi.org/10.1007/BF02290317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02290317

Key Words

Navigation