Skip to main content
Log in

Optimizing separations in reversed-phase liquid chromatography by varying pH and solvent composition

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

An interpretive optimization procedure in which pH can be one of the variables is presented with the emphasis on optimizing separations. When varying the pH in reversed-phase liquid chromatography the retention of ionogenic solutes will change. Thus, the selectivity between ionogenic and neutral solutes or between ionogenic solutes mutually can be optimized. However, pH also greatly affects the efficiency (plate count) and peak shape (asymmetry). Optimum selectivity (i.e. large differences in retention times) may be observed under conditions where peaks are broad and asymmetrical. Thus, it is essential to simultaneously consider retention, peak width and peak shape and their effects on separation (effective resolution) in pH-optimization studies. A procedure in which this is done is presented and applied to optimizing the separation of a synthetic mixture of selected pharmaceuticals. After initial experiments to establish the parameter space (boundaries for pH and binary methanol — water composition), twelve experiments are performed according to a 3×4 experimental design. At each loaction the retention, peak height, peak area and peak symmetry are recorded for each solute. These data are then used to build models for each of the four characteristics and for each solute. From this set of models the response surface, describing the quality of separation as a function of pH and composition, can be calculated. A variety of optimization criteria (quantifying quality of separation) can be used. The optimum corresponds to the highest point on the response surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Schoenmakers, Optimization of Chromatographic Selectivity, A Guide to Method Development, Elsevier, Amsterdam, 1986.

    Google Scholar 

  2. J. C. Berridge, Techniques for the Automated Optimization of HPLC Separations, Wiley, Chichester, 1985.

    Google Scholar 

  3. T. Hamoir, M. de Smet, H. Pirijns, P. Conti, N. Vandendriesche, D. L. Massart, F. Maris, H. Hindriks, P. J. Schoenmakers, J. Chromatogr.589, 31 (1992).

    Article  Google Scholar 

  4. P. J. Schoenmakers, S. van Molle, C. M. G. Hayes, L. G. M. Uunk, Anal. Chim. Acta250, 1 (1991).

    Article  Google Scholar 

  5. R. M. Lopes Marques, P. J. Schoenmakers, J. Chromatogr.592, 157 (1992).

    Article  Google Scholar 

  6. L. R. Snyder, J. Chromatogr.592, 183; 197 (1992).

    Article  PubMed  Google Scholar 

  7. A. Drouen, J. W. Dolan, L. R. Snyder, A. Poile, P. J. Schoenmakers, LC-GC9 (10), 714 (1991).

    Google Scholar 

  8. G. K. Low, Á. Bartha, H. A. H. Billiet, L. de Galan, J. Chromatogr.478, 21 (1989).

    Article  Google Scholar 

  9. P. J. Schoenmakers, Á. Bartha, H. A. H. Billiet, J. Chromatogr.550, 425 (1991).

    Article  Google Scholar 

  10. P. J. Schoenmakers, H. A. H. Billiet, L. de Galan, J. Chromatogr.205, 13 (1981).

    Article  Google Scholar 

  11. P. J. Naish, R. J. Lynch, T. Blaffert, Chromatographia27, 343 (1989).

    Google Scholar 

  12. P. J. Naish, R. J. Lynch, Chromatographia29, 79 (1990).

    Article  Google Scholar 

  13. M. J. P. Gerritsen, On-line curve resolution in HPLC using diode-array detection, Ph. D. thesis, University of Nijmegen, 1992.

  14. R. J. Lynch, C. Measures, Pittsburg Conference, New Orleans, March 9–13, 1992, Paper no. 463 P.

  15. R. M. Lopes Marques, P. J. Schoenmakers, C. B. Lucasius, G. Kateman, 19th International Symposium on Chromatography, Aix-en-Provence, September 1992, submitted for publication in Chromatographia

  16. S. Sekulic, P. R. Haddad, J. Chromatogr.459, 65 (1988).

    Article  Google Scholar 

  17. P. R. Haddad, S. Sekulic, J. Chromatogr.459, 79 (1988).

    Article  Google Scholar 

  18. P. J. Schoenmakers, J. K. Strasters, Á. Bartha, J. Chromatogr.458, 355 (1987).

    Article  Google Scholar 

  19. A. Peeters, L. Buydens, D. L. Massart, P. J. Schoenmakers, Chromatographia26, 101 (1988).

    Article  Google Scholar 

  20. P. J. Schoenmakers, N. Dunand, A. C. Cleland, G. Musch, T. Blaffert, Chromatographia26, 37 (1988).

    Article  Google Scholar 

  21. P. J. Schoenmakers, N. Dunand, J. Chromatogr.486, 219 (1989).

    Article  Google Scholar 

  22. P. J. Schoenmakers, J. Liq. Chromatogr.10, 1865 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenmakers, P.J., Mackie, N. & Marques, R.M.L. Optimizing separations in reversed-phase liquid chromatography by varying pH and solvent composition. Chromatographia 35, 18–32 (1993). https://doi.org/10.1007/BF02278552

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02278552

Key Words

Navigation