Skip to main content
Log in

Development of insect resistance in tomato plants expressing the δ-endotoxin gene ofBacillus thuringiensis subsp.tenebrionis

  • Research Articles
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A crystal δ-endotoxin gene ofBacillus thuringiensis subsp.tenebrionis (B.t.t.) encoding a coleopteran insect-specific toxin was used to construct a chimeric gene which expressed the toxin in plant cells. Via anAgrobacterium tumefaciens binary vector system, the toxin gene was transferred into tomato cells. From leaf disks recombinant plants were regenerated. Hybridization experiments demonstrated that these plants synthesized toxin-specific mRNA of the expected size. Transgenic tomato plants with the chimericB.t.t. toxin gene contained a 74 kDa protein which cross-reacted with toxin antibodies. The expression caused a significant insecticidal activity of the transgenic tomato plants against Colorado potato beetle larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson AI, Beckman W, Dunn P:Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50: 1–24 (1986).

    PubMed  Google Scholar 

  2. Barton KA, Whiteley HR, Yang NS:Bacillus thuringiensis δ-endotoxin expressed in transgenicNicotiana tabacum provides resistance to Lepidopteran insects. Plant Physiol 85: 1103–1109 (1987).

    Google Scholar 

  3. Barton KA, Miller MJ: Production ofBacillus thuringiensis insecticidal proteins in plants. In: Kung SD, Wu R (eds) Transgenic Plants, vol. 1, pp. 297–315. Academic Press, New York (1993).

    Google Scholar 

  4. Chirgwin JM, Przybyla AE, Macdonald RI, Rutter WJ: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299 (1979).

    Article  PubMed  Google Scholar 

  5. Ely S: The engineering of plants to expressBacillus thuringiensis δ-endotoxins. In: Entwistle PF, Cory JS, Higgs S (eds)Bacillus thuringiensis: An Environmental Biopesticide: Theory and practice, pp. 105–124. John Wiley, West Sussex (1993).

    Google Scholar 

  6. Fischhoff D, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermayer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT: Insect tolerant transgenic tomato plants. Bio/technology 5: 807–813 (1987).

    Article  Google Scholar 

  7. Gelernter W, Schwab GE: Transgenic bacteria, viruses, alge and other microorganisms asBacillus thuringiensis toxin delivery systems. In: Entwistle PF, Cory JS, Higgs S (eds),Bacillus thuringiensis: An Environmental Biopesticide: Theory and practice, pp. 89–104, John Wiley, West Sussex (1993).

    Google Scholar 

  8. Hahlbrock K, Gross P, Colling CH, Scheel D: Molecular basis of plant defense responses to fungal infections. In: Herrman RG, Larkins BA (eds) Plant Molecular Biology vol. 2, pp. 147–151, Plenum Press, New York/ London (1991).

    Google Scholar 

  9. Hoefgen R, Willmitzer L: Biochemical and genetic analysis of different patatin isoforms expressed in various organs of potato (Solanum tuberosum). Plant Sci 66: 221–230 (1990).

    Article  Google Scholar 

  10. Hoefte H, Whiteley HR: Insecticidal crystal proteins ofBacillus thuringiensis. Microbiol Rev 53: 242–255 (1989).

    PubMed  Google Scholar 

  11. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA: Abinary plant vector strategy based on separation ofvir- and T-region of theAgrobacterium tumefaciens Tiplasmid. Nature 303: 179–180 (1983).

    Article  Google Scholar 

  12. Jones JDG, Dunsmuir P, Bedbrook J: High level expression of introduced chimeric genes in regenerated transformed plants. EMBO J 4: 2411–2418 (1985).

    PubMed  Google Scholar 

  13. Koornneef M, van Diepen JAM, Hanhart CJ, Kieboomde Waart AC, Martinelli L: Chromosomal instability in cell- and tissue cultures of tomato haploids and diploids. Euphytica 43: 179–186 (1989).

    Article  Google Scholar 

  14. Krieg A, Huger AM, Langenbruch GA, Schnetter W:Bacillus thuringiensis var.tenebrionis: ein neuer, gegenuber Larven von Coleopteren Wirksamer Pathotyp. Z angew Entomol 96: 500–508 (1983).

    Google Scholar 

  15. Krieg A, Schnetter W, Huger AM, Langenbruch GA:Bacillus thuringiensis subsp.tenebrionis, strain BI 256-82: a third pathotype within the H-serotype 8a8b system. Appl Microbiol 9: 138–141 (1987).

    Google Scholar 

  16. Kung SD: Introduction: from hybrids plants to transgenic plants. In: Kung SD, Wu R (eds) Transgenic Plants, vol. 1, pp. 1–12. Academic Press, New York (1993).

    Google Scholar 

  17. McCormick SM, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R: Leaf-disk transformation of cultivated tomato (L. esculentum) usingAgrobacterium tumefaciens. Plant Cell Rep 5: 81–84 (1986).

    Article  Google Scholar 

  18. McPherson SA, Perlak FJ, Fuchs RL, Marrone PG, Lavrik PB, Fishhoff DA: Characterization of the coleopteran-specific protein gene ofBacillus thuringiensis var.tenebrionis. Bio/technology 6: 61–66 (1988).

    Article  Google Scholar 

  19. Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).

    Google Scholar 

  20. Odell JT, Nagy F, Chua NH: Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812 (1985).

    Article  PubMed  Google Scholar 

  21. Rhim SL, Jahn N, Schnetter W, Geider K: Heterologous expression of a mutated toxin gene fromB. thuringiensis ssp.tenebrionis. FEMS Microbiol Lett 66: 95–100 (1990).

    Article  Google Scholar 

  22. Rogers SO, Bendich AJ: Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA (ed) Plant Molecular Biology Manual, A6: 1–10. Kluwer Academic Publishers, Dordrecht (1988).

    Google Scholar 

  23. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  24. Sekar V, Thomson DV, Maroney MJ, Bookland RG, Adang MJ: Molecular cloning and characterization of the insecticidal crystal protein gene ofBacillus thuringiensis var.tenebrionis. Proc Natl Acad Sci USA 84: 7036–7040 (1987).

    Google Scholar 

  25. Simon R, Priefer U, Puehler A: Vector plasmids for in-vivo and in-vitro manipulations of gram-negative bacteria. In: Puehler A (ed) Molecular Genetics of the Bacterial-Plant Interaction, pp. 98–106. Springer-Verlag, Berlin/Heidelberg (1983).

    Google Scholar 

  26. Smith CM: Plant Resistance to Insects. John Wiley, New York (1989).

    Google Scholar 

  27. Thorne L, Garduno F, Thompson T, Decker D, Zounes M, Wild M, Walfield AM, Pollock TJ: Structural similarity between the Lepidoptera- and Diptera-specific insecticidal endotoxin genes ofBacillus thuringiensis subsp.kurstaki andisralensis. J Bact 166: 801–811 (1986).

    PubMed  Google Scholar 

  28. Vaeck M, Reynaerts A, Hoefte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J: Transgenic plants protected from insect attack. Nature 328 (2): 33–37 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhim, SL., Cho, HJ., Kim, BD. et al. Development of insect resistance in tomato plants expressing the δ-endotoxin gene ofBacillus thuringiensis subsp.tenebrionis . Mol Breeding 1, 229–236 (1995). https://doi.org/10.1007/BF02277423

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02277423

Key words

Navigation