Skip to main content
Log in

The extent of complex population changes in nature

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Many models of animal populations show complex yet predictable patterns of density changes under simple and plausible assumptions. Yet one previous attempt to determine the extent and importance of complex dynamics concluded that they were likely only in some laboratory populations, but not in field populations. Ecologists have treated changes more complex than a return to a simple equilibrium, such as the cyclical changes in populations of lynx and voles in the arctic, as special cases. Highly variable populations, such as insects, are usually thought to be driven by unpredictable changes in the weather. Here, we assemble 71 populations counted for over 50 years, and suggest that complex yet predictable population changes are more common than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bodenheimer, F. S. (1958)Animal Ecology Today. W. Junk, The Hague.

    Google Scholar 

  • Davidson, J. and Andrewartha, H. G. (1948) Annual Trends in natural populations ofThrips imaginis.J. Anim. Ecol. 17, 193–9.

    Google Scholar 

  • Elton, C. S. and Nicholson, M. (1942a) Fluctuations in numbers of muskrats (Ondatra zibethicus) in Canada.J. Anim. Ecol. 11, 96–126.

    Google Scholar 

  • Elton, C. S. and Nicholson, M. (1942b) The ten-year cycle in numbers of the lynx in Canada.J. Anim. Ecol. 11, 215–44.

    Google Scholar 

  • Elton, C. S. (1942)Voles Mice and Lemmings. Clarendon Press, Oxford.

    Google Scholar 

  • Finerty, J. P. (1980)The Population Ecology of Cycles in Small Mammals. Yale University Press, New Haven.

    Google Scholar 

  • Fraser, A. M. (1989) Reconstructing attractors from scalar time series: a comparison of singular system and redundance criteria.Physica D. 34, 391–404.

    Google Scholar 

  • Fraser, A. M. and Swinney, H. L. (1986) Independent coordinates for strange attractors from mutual independence.Physical Review A 33, 1134–40.

    Google Scholar 

  • Gilpin, M. E. (1979) Spiral chaos in a predator-prey model.Am. Nat. 113, 306–8.

    Google Scholar 

  • Hansson, L. (1987) An interpretation of rodent dynamics as due to trophic interactions.Oikos 50, 308–18.

    Google Scholar 

  • Hansson, L. and Hentonnen, H. (1985) Gradients in density variations of small rodents: the importance of latitude and snow cover.Oecologia 67, 394–402.

    Google Scholar 

  • Hentonnen, H., Oksanen, T., Jortikka, A. and Haukisalmi, V. (1987) How much do weasels shape microtine cycles in northern Fennoscandian taiga?Oikos 50, 353–65.

    Google Scholar 

  • Hassell, M. P., Lawton, J. H. and May, R. M. (1976) Patterns of dynamical behaviour in single-species populations.J. Anim. Ecol. 45, 471–86.

    Google Scholar 

  • MacKenzie, J. M. D. (1952) Fluctuations in the numbers of British tetronids.J. Anim. Ecol. 21, 128–53.

    Google Scholar 

  • MacLulich, D. A. (1957) The place of chance in population processes.J. Wildl. Mgmt. 21, 293–9.

    Google Scholar 

  • May, R. M. (1987) Chaos and the dynamics of biological populations.Proc. Roy. Soc. A. 413, 27–44.

    Google Scholar 

  • Middleton, A. D. (1934) Periodic fluctuations in British game populations.J. Anim. Ecol. 3, 231–49.

    Google Scholar 

  • Pimm, S. L. (1990)The Balance of Nature? Chicago University Press, Chicago.

    Google Scholar 

  • Rausch, R. A. and Pearson, A. M. (1972) Notes on the wolverine in Alaska and the Yukon Territory.J. Wildl. Mgmt. 36, 249–68.

    Google Scholar 

  • Reynolds, C. M. (1979) The heronries census: 1972–1977 population changes and a review.Bird Study 26, 7–12.

    Google Scholar 

  • Schaffer, W. M. (1985) Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology?IMA J. Math. Appl. Med. Biol. 2, 221–52.

    Google Scholar 

  • Schaffer, W. M. and Kot, M. (1985) Nearly one dimensional dynamics in a simple epidemic.J. Theor. Biol. 112, 403–27.

    Google Scholar 

  • Schaffer, W. M. and Kot, M. (1986a) Chaos in Ecological Systems: The coals that Newcastle forgot.Trends in Ecol. Evol. 1, 58–63.

    Google Scholar 

  • Schaffer, W. M. and Kot, M. (1986b) Differential systems in ecology and epidemiology. InChaos (A. V. Holden, ed.) pp. 158–78. Princeton University Press, Princeton.

    Google Scholar 

  • Stafford, J. (1971) The heron population of England and Wales.Bird Study 18, 218–21.

    Google Scholar 

  • Takens, F. (1981) InDynamical Systems and Turbulence (D. A. Rand and L.-S. Young, eds) pp. 366–81. Springer Verlag, New York.

    Google Scholar 

  • Varley, G. C. (1949) Population changes in German forest.J. Anim. Ecol. 18, 117–22.

    Google Scholar 

  • Williams, G. R. (1954) Population fluctuations in some northern hemisphere game birds (tetraonidae).J. Anim. Ecol. 23, 1–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witteman, G.J., Redfearn, A. & Pimm, S.L. The extent of complex population changes in nature. Evol Ecol 4, 173–183 (1990). https://doi.org/10.1007/BF02270914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02270914

Keywords

Navigation