Skip to main content
Log in

Modelling reproductive allocation of dusky salamanders using optimal control theory: Pros, cons and caveats

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Optimal control theory has been used to examine the evolution of life history characters in a variety of plant and animal species. In this paper, I examine control theoretic models of reproductive allocation in female dusky salamanders and consider some practical aspects of modelling, including the appropriateness of nonlinear formulations, methods for describing semelparous reproduction, and data needed to parameterize models. The model analysed includes state variables for somatic and reproductive tissue, energy intake and requirements for physiological maintenance, and iteroparous reproduction. It predicts that female salamanders should spend the first part of their lives growing. After reaching sexual maturity, females should either spend the remainder of their lives reproducing at the expense of decreasing body size, possibly resulting in death by starvation, or maintain approximately constant body size at the expense of low reproductive output. This lack of correspondence to the observed biology of dusky salamanders suggests that not all the appropriate biology has been described. In particular, inclusion of a storage variable may be necessary in future modelling efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bryson, A. E., Jr and Ho, Y. C. (1975)Applied Optimal Control. Hemisphere, NY, USA.

  • Chiariello, N. and Roughgarden, J. (1984) Storage allocation in seasonal races of an annual plant: optimal versus actual allocation.Ecol. 65, 1290–301.

    Google Scholar 

  • Cohen, D. (1971) Maximizing final yield when growth is limited by time or by limiting resources.J. Theor. Biol. 33, 299–307.

    Google Scholar 

  • Edelstein-Keshet, L. (1988)Mathematical Models in Biology. Random House, NY, USA.

  • Fitzpatrick, L. C. (1973) Energy allocation in the Allegheny mountain salamander,Desmognathus ochrophaeus (Amphibia, Plethodontidae).Ecol. Monogr. 43, 43–58.

    Google Scholar 

  • Ford, N. B. and Seigel, R. A. (1989) Phenotypic plasticity in reproductive traits evidence from a viviparous snake.Ecol. 70, 1768–74.

    Google Scholar 

  • Forester, D. C. (1977) Comments on the female reproductive cycle and philopatry inDesmognathus ochrophaeus (Amphibia, Urodela, Plethodontidae).J. Herpetol. 11, 311–16.

    Google Scholar 

  • Forester, D. C. (1981) Parental care in the salamanderDesmognathus ochrophaeus: female activity pattern and trophic behavior.J. Herpetol. 15, 29–34.

    Google Scholar 

  • Fox, G. A. (1992a) Annual plant life histories and the paradigm of resource allocation.Evol. Ecol. 6, 482–99.

    Google Scholar 

  • Fox, G. A. (1992b) The effect of time-varying mortality and carbon assimilation on models of carbon allocation in annual plants.Evol. Ecol. 6, 500–18.

    Google Scholar 

  • Hindmarsh, A. C. (1980) LSODE and LSODI: two new initial value ordinary differential equation solvers.ACM-SIGNUM Newsletter 15, 10–11.

    Google Scholar 

  • Hom, C. L. (1987a) Control theory predictions of reproductive allocation in female dusky salamanders.J. Math. Biol. 25, 289–306.

    Google Scholar 

  • Hom, C. L. (1987b) Reproductive ecology of female dusky salamanders,Desmognathus fuscus (Plethodontidae) in the Southern Appalachians.Copeia 1987, 768–77.

    Google Scholar 

  • Hom, C. L. (1988) Optimal reproductive allocation in female dusky salamanders: a quantitative test.Am. Nat. 131, 71–90.

    Google Scholar 

  • Ives, A. R. (1989) The optimal clutch size of insects when many females oviposit per patch.Am. Nat. 133, 671–87.

    Google Scholar 

  • Iwasa, Y. and Cohen, D. (1989) Optimal growth schedule of a perennial plant.Am. Nat. 133, 480–505

    Google Scholar 

  • Iwasa, Y. and Roughgarden, J. (1984) Shoot/root balance of plants: optimal growth of a system with many vegetative organs.Theor. Pop. Biol. 25, 78–105.

    Google Scholar 

  • King, D. and Roughgarden, J. (1982) Graded allocation between vegetative and reproductive growth for annual plants in growing seasons of random length.Theor. Pop. Biol. 22, 1–16.

    Google Scholar 

  • Kozłowski, J. and Uchmański, J. (1987) Optimal individual growth and reproduction in perennial species with indeterminate growth.Evol. Ecol. 1, 214–30.

    Google Scholar 

  • Leitman, G. (1981)The Calculus of Variations and Optimal Control. Plenum Press, NY, USA.

    Google Scholar 

  • Lin, C. C. and Segel, L. E. (1974)Mathematics Applied to Problems in the Natural Sciences. MacMillan Publishing Co., NY, USA.

    Google Scholar 

  • Ludwig, D. and Walters, C. J. (1985) Are age-structured models appropriate for catch-effort data?Can. J. Fish. Aquatic Sci. 42, 1066–72.

    Google Scholar 

  • Macievicz, S. and Oster, G. (1978) Modelling social insect populations II: optimal reproductive strategies in annual eusocial insect colonies.Behav. Ecol. Sociobiol. 1, 265–82.

    Google Scholar 

  • Organ, J. A. (1961) Studies of the local distribution, life history, and population dynamics of the salamander genusDesmognathus in Virginia.Ecol. Monogr. 31, 189–200.

    Google Scholar 

  • Peters, R. H. (1983)The Ecological Implications of Body Size. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Pontryagin, L. S., Boltyanskii V. G., Gamkrelidze, R. V. and Mishchenko, E. F. (1962)The Mathematical Theory of Optimal Control Processes, Interscience Publishers, NY, USA.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1986),Numerical Recipes: the Art of Scientific Computing. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Pugliese, A. (1987) Optimal resource allocation and optimal size in perennial herbs.J. Theor. Biol.,126, 33–49.

    Google Scholar 

  • Pugliese, A. (1988) Optimal life history models, effects of nonlinearities in the response of reproductive success to investment. InBiomathematics and Related Computational Problems (L. M. Ricciardi, ed.). pp. 223–35. Klawen Academic Press, Dordrecht.

    Google Scholar 

  • Pugliese, A. and Kozłowski, J. (1990) Optimal patterns of growth and reproduction for perennial plants with persisting or not persisting vegetative parts.Evol. Ecol. 4, 75–89.

    Google Scholar 

  • Schaffer, W. M. (1983) The application of optimal control theory to the general life history problem.Am. Nat. 121, 418–31.

    Google Scholar 

  • Stearns, S. C. (1976) Life history tactics: a review of the ideas.Q. Rev. Biol. 51, 3–47.

    Google Scholar 

  • Stearns, S. C. (1977) The evolution of life history traits: a critique of the theory and review of the data.Ann. Rev. Ecol. and Syst. 8, 145–71.

    Google Scholar 

  • Stearns, R. C. and Crandall, R. C. (1981) Quantitative predictions of delayed maturity.Evolution 35, 455–63.

    Google Scholar 

  • Tilley, S. G. (1968) Size-fecundity relationships and their evolutionary significance in five desmognathine salamanders.Evolution 22, 806–16.

    Google Scholar 

  • Tilley, S. G. (1972) Aspects of parental care and embryonic development inDesmognathus ochrophaeus.Copeia 1972, 532–40.

    Google Scholar 

  • Tilley, S. G. (1973) Life histories and natural selection in populations of the salamander.Desmognathus ochrophaeus.Ecol. 54, 3–17.

    Google Scholar 

  • Tilley, S. G. (1977) Studies of the life histories and reproduction in North American plethodontid salamanders. InThe Reproductive Biology of the Amphibians (D. H. Taylor and S. I. Guttman, eds). pp. 1–41. Plenum Press, NY, USA.

    Google Scholar 

  • Tilley, S. G. (1980) Life histories and comparative demography of two salamander populations.Copeia 1980, 806–21.

    Google Scholar 

  • Werner, E. E. (1986) Amphibian metamorphosis growth rate, predation risk, and the optimal size at transformation.Am. Nat. 128, 319–41.

    Google Scholar 

  • Werner, E. E. and Gilliam, J. F. (1984) The ontogenetic niche and species interactions in size-structured populations.Ann. Rev. Ecol. Syst. 15, 393–425.

    Google Scholar 

  • Whitford, W. G. and Hutchinson, V. H. (1967) Body size and metabolic rate in salamanders.Physiol. Zool. 40, 127–33.

    Google Scholar 

  • Williams, G. C. (1966) Natural selection, the costs of reproduction, and a refinement of Lack's principle.Am. Nat. 100, 687–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hom, C.L. Modelling reproductive allocation of dusky salamanders using optimal control theory: Pros, cons and caveats. Evol Ecol 6, 458–481 (1992). https://doi.org/10.1007/BF02270692

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02270692

Keywords

Navigation