Skip to main content
Log in

Dependence of solution data at ideal dilution on solvent molecular size

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Gas-liquid chromatography allows the rapid experimental determination of the Henry coefficient of molecular probes if a number of precautions are taken. From a knowledge of the temperature dependence of the related standard chemical potential, the standard partial molar enthalpy, entropy and the mean heat capacity difference can be calculated. These functions determine the retention behaviour of the probe over a temperature range of more than 100 K with a precision better than 1%. They also give the necessary information to verify and to develop models for ideal dilute solutions and for the calculation of interaction forces. The choice of specific solvents is examined and justified and the experimental determination of retention data is discussed especially with reference to the precautions to observe in order to measure retention governed by gas-liquid partition only. Calculation of the standard chemical potential related to the molal Henry coefficient is advocated and the dependence of the standard chemical potential on size and shape of the solvent molecule based on data collected on paraffinic stationary phases is examined. This latter function is shown to depend linearly on the inverse of the molar mass of the solvent. Comparison with literature data demonstrates the general validity of this finding and that the shape of the solvent molecule is of less importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aa. Fredenslund, R. L. Jones, J. M. Prausnitz, AIChE J.21, 1086 (1975).

    Google Scholar 

  2. Aa. Fredenslund, J. Gmehling, M. L. Michelsen, P. Rasmussen, J. M. Prausnitz, Ind. Eng. Chem. Process Des. Dev.16, 450 (1977).

    Google Scholar 

  3. L. Rohrschneider, J. Chromatogr.17, 1 (1965).

    Google Scholar 

  4. L. Rohrschneider, Z. Anal. Chem.211, 18 (1965).

    Google Scholar 

  5. L. Rohrschneider, J. Chromatogr.22, 6 (1966).

    Google Scholar 

  6. E. sz. Kováts, Chimia22, 459 (1968).

    Google Scholar 

  7. E. sz. Kováts, P. B. Weisz, Ber. Bunsenges Phys. Chem.69, 812 (1965).

    Google Scholar 

  8. J. H. Hildebrand, J. M. Prausnitz, R. L. Scott, “Regular and Related Solutions”, Van Nostrand Reinhold Company, Inc., New York, 1970.

    Google Scholar 

  9. J. M. Prausnitz, R. N. Lichtenthaler, “Molecular Thermodynamics of Fluid-Phase Equilibria”, 2nd ed., Prentice-Hall Inc., N.J., 1986.

    Google Scholar 

  10. R. Foster, Ed., “Molecular Complexes”, Crane, Russak & Co., Inc., New York, Vol. I, 1973; Vol. II, 1974.

    Google Scholar 

  11. G. A. Huber, E. sz. Kováts, Anal. Chem.45, 1155 (1973).

    Google Scholar 

  12. F. Riedo, D. F. Fritz, G. Tarján, E. sz. Kováts, J. Chromatogr.126, 63 (1976).

    Google Scholar 

  13. G. Défayes, D. F. Fritz, T. Görner, G. A. Huber, C. de Reyff, E. sz. Kováts, J. Chromatogr.500, 139 (1990).

    Google Scholar 

  14. J.-C. Dutoit, “Doctoral Thesis No 717” Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1988.

  15. D. F. Fritz, A. Sahil, E. sz. Kováts, J. Chromatogr.186, 63 (1979).

    Google Scholar 

  16. F. Riedo, E. sz. Kováts, J. Chromatogr.186, 47 (1979).

    Google Scholar 

  17. R. L. Martin, Anal. Chem.33, 347 (1961); 35, 116 (1963).

    Google Scholar 

  18. D. E. Martire, Anal. Chem.38, 244 (1966); see alsoD. E. Martire in “Progress in Gas Chromatography”,J. H. Purnell, Ed., Wiley, New York 1968, p. 93;D. E. Martire, R. L. Pecsok, J. H. Purnell, Nature203, 1279 (1964);D. E. Martire, R. L. Pecsok, J. H. Purnell, Trans. Faraday Soc.61, 2496 (1965);J. R. Conder, Anal. Chem.48, 917 (1976).

    Google Scholar 

  19. A. W. Adamson, “Physical Chemistry of Surfaces”, 4th ed., Wiley-Interscience, New York, 1982, p. 37.

    Google Scholar 

  20. R. C. Weast, Ed. “CRC Handbook of Chemistry and Physics”, 67th ed., CRC Press, Inc., Boca Raton, Florida, 1986–87, F-32.

    Google Scholar 

  21. T. J. Betts, J. Chromatogr.354, 1 (1986).

    Google Scholar 

  22. L. Podmaniczky, L. Szepesy, L. Lakszner, G. Schomburg, Chromatographia21, 387 (1986).

    Google Scholar 

  23. K. Komárek, J. Churácek, J. Kríz, K. Tesarík, J. Chromatogr.357, 273 (1986).

    Google Scholar 

  24. D. F. Fritz, E. sz. Kováts, Anal. Chem.45, 1175 (1973).

    Google Scholar 

  25. P. Zeltner, G. A. Huber, R. Peters, F. Tátrai, L. Boksányi, E. sz. Kováts, Helv. Chim. Acta62, 2495 (1979).

    Google Scholar 

  26. P. J. Flory, J. Chem. Phys.9, 660 (1941);10, 51 (1942);12, 425 (1944).

    Google Scholar 

  27. M. L. Huggins, Ann. N. Y. Acad. Sci.43, 1 (1942);44, 431 (1943).

    Google Scholar 

  28. I. Prigogine, A. Bellemans, V. Mathot, “The Molecular Theory of Solutions”, North-Holland Publishing Co., Amsterdam 1957.

    Google Scholar 

  29. P. J. Flory, Disc. Faraday Soc.49, 7 (1970).

    Google Scholar 

  30. T. Sugiyama, T. Takeuchi, Y. Suzuki, J. Chromatogr.105, 265 (1975).

    Google Scholar 

  31. Y. B. Tewari, D. E. Martire, J. P. Sheridan, J. Phys. Chem.74, 2345 (1970).

    Google Scholar 

  32. A. Kwantes, C. W. A. Rijnders, in “Gas Chromatography”,D. H. Desty, Ed., Butterworths, London, 1958, p. 125.

    Google Scholar 

  33. W. O. McReynolds, J. Chromatogr. Sci.8, 685 (1970).

    Google Scholar 

  34. G. Castello, G. D. Amato, J. Chromatogr.269, 153 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, K.S., Kováts, E.s. Dependence of solution data at ideal dilution on solvent molecular size. Chromatographia 30, 493–499 (1990). https://doi.org/10.1007/BF02269794

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02269794

Key Words

Navigation