Skip to main content
Log in

Determination of glycuronic acids by high-performance anion chromatography with pulsed amperometric detection

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Acid hydrolysis (0.25M H2SO4) coupled with enzyme catalysis (pectolyase and β-D-glucuronidase) were employed to extract galacturonic and glucuronic acids from microbial polysaccharides, plant residues, animal wastes, sewage sludge and soil. The glycuronic acids were separated by high-performance anion chromatography (HPAC) on a strong anion-exchange column using 0.1M sodium hydroxide with 0.25M sodium acetate as the mobile phase and determined by pulsed amperometric detection (PAD). HPAC-PAD was found to be superior to high-performance liquid chromatography with ultra-violet (UV) detection in terms of resolution and sensitivity of glycuronic acids. HPAC-PAD was not subject to interferences present with low UV detection (210 nm) and was highly selective for glycuronic acids. Enzymatic hydrolysis after treatment with mild acid (0.25M H2SO4) released galacturonic acids from organge peel and pectin, while glucuronic acid was released from Acacia powder. Large amounts of glycuronic acids were also extracted from plant materials. Low levels of uronic acids were detected in poultry manure, sewage sludge and organic-amended soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Stacey, S.A. Barker, in Carbohydrates of Living Tissues, Van Nostrand, London (1962); pp. 1–89.

    Google Scholar 

  2. M. Stacey, S.A. Barker, in Polysaccharides of Microorganisms, Oxford University Press, London (1960); pp. 8–21.

    Google Scholar 

  3. G.O. Aspinall, Advan. Carbohyd. Chem. Biochem.,24, 333 (1969).

    Google Scholar 

  4. R.L. Whistler, R.M. Rowell, in Glucuronic acid (G.J. Dutton, Ed.), Academic Press, New York, NY (1960); pp. 137–185.

    Google Scholar 

  5. P. Dubach, D.L. Lynch, Soil Sci.,87, 273 (1959).

    Google Scholar 

  6. S. Bartnicki-Garcia, E. Reyes, Biochim. Biophys. Acta,170, 54 (1968).

    PubMed  Google Scholar 

  7. S.A. Fazio, D.J. Uhlinger, J.H. Parker, D.C. White, Appl. Environ. Microbiol.,43, 1151 (1982).

    Google Scholar 

  8. N. Blumenkrantz, G. Asboe-Hansen, Anal. Biochem.,54, 484 (1973).

    Article  PubMed  Google Scholar 

  9. K.U. Lefèvre, B. Tollens, Ber.,40, 4513 (1907).

    Google Scholar 

  10. L. Benzing-Purdie, J.H. Nikiforuk, Soil Sci.,145, 264 (1988).

    Google Scholar 

  11. A.G.J. Voragen, H.A. Schols, J.A. DeVries, W. Pelnik, J. Chromatog.,244, 327 (1982).

    Article  Google Scholar 

  12. A.H. Brown, Arch. Biochem.,11, 269 (1946).

    Google Scholar 

  13. Z. Dische, J. Biol. Chem.,167, 189 (1947).

    Google Scholar 

  14. T. Bitter, H.M. Muir, Anal. Biochem.,4, 339 (1962).

    Article  Google Scholar 

  15. J. Galambos, Anal. Biochem.,19, 119 (1967).

    Article  PubMed  Google Scholar 

  16. E.C. Shorey, J.B. Martin, J. Am. Chem. Soc.,52, 4907 (1930).

    Article  Google Scholar 

  17. H. Deuel, P. Dubach, R. Bach, Z. Pflanzenernähr. Düng Bodenk.,81, 189 (1958).

    Google Scholar 

  18. J.M. Bremner, Analyst,74, 492 (1949).

    Article  Google Scholar 

  19. D.L. Lynch, E.E. Hearns, L.J. Cotnoir, Soil Sci. Soc. Amer. Proc.,21, 160 (1957).

    Google Scholar 

  20. K.C. Ivarson, F.J. Sowden, Soil Sci.,94, 245 (1964).

    Google Scholar 

  21. L.E. Lowe, M.E. Turnbull, Soil Sci.,106, 312 (1968).

    Google Scholar 

  22. J.D. Blake, G.N. Richards, Carbohydr. Res.,8, 275 (1968).

    Article  Google Scholar 

  23. O. Raunhardt, Gas-chromatographische Untersuchungen an Uronsäuren und Ihren Umwandlungsprodukten, Dissertation E. T. H. Zürich, 1968, No. 4161.

  24. T.M. Jones, P. Albersheim, Plant Physiol.,49, 926 (1972).

    Google Scholar 

  25. E. Mergenthaler, H. Scherz, Z. Lebensm.-Unters.-Forsch.,162, 159 (1976).

    Article  PubMed  Google Scholar 

  26. D.A. Martens, W.T. Frankenberger, Jr., Chromatographia29, 7 (1990).

    Article  Google Scholar 

  27. S. Hughes, D.C. Johnson, Anal. Chim. Acta,132, 11 (1983).

    Article  Google Scholar 

  28. D.W. Nelson, L.E. Sommers, in Methods of Soil Analysis,A.L. Page (editor), American Society of Agronomy, Madison, Wisconsin (1982), pp. 539–579.

    Google Scholar 

  29. J.M. Bremner, C.S. Mulvaney, in Methods of Soil Analysis,A.L. Page (editor), American Society of Agronomy, Madison, Wisconsin (1982), pp. 595–624.

    Google Scholar 

  30. J.P. Martin and S.J. Richards, J. Bacteriol.,85, 1288 (1963).

    PubMed  Google Scholar 

  31. O. Theander, in The Carbohydrates, Vol. IB, Academic Press, New York, NY (1980), pp. 1013–1099.

    Google Scholar 

  32. D.A. Skoog, in Principles of Instrumental Analysis,M. Iannuzzi, P. Smith (editors), Sanders College Publishers, Philadelphia, PA (1985); pp. 727–756.

    Google Scholar 

  33. D.M.W. Anderson, Sir. E. Hurst, J.F. Stoddart, J. Chem. Soc. (London), 1959 (1966).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Corrected version of paper published in Vol. 30, No. 5/6, September 1990, pp. 249–254

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martens, D.A., Frankenberger, W.T. Determination of glycuronic acids by high-performance anion chromatography with pulsed amperometric detection. Chromatographia 30, 651–656 (1990). https://doi.org/10.1007/BF02269740

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02269740

Key Words

Navigation