Skip to main content
Log in

Determination of saccharides by high performance anion-exchange chromatography with pulsed amperometric detection

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

High performance anion-exchange chromatography (HPAC) coupled with pulsed amperometric detection (PAD) under alkaline conditions (pH 13) separates neutral saccharides based upon their molecular size, saccharide composition, and glycosidic linkages. Carbohydrates were detected by oxidation with a gold-working electrode. HPAC-PAD was compared to high performance liquid chromatography (HPLC) with refractive index (RI) detection in terms of selectivity and sensitivity of saccharides. The results indicate that HPAC-PAD was more precise, two orders of magnitude more sensitive (pmol range) and gives better resolution of saccharides than HPLC-RI. HPAC-PAD required less sample preparation and was not subjected to matrix interferences. The use of HPAC-PAD was applied to the analysis of organic materials (plant residues, animal wastes and sewage sludge) and soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Brink, Jr., P. Dubach, D. L. Lynch, Soil Sci.89, 1 (1960).

    Google Scholar 

  2. M. Dubois, K. A. Gilles, J. K. Hamliton, P. A. Rebers, I. Smith, Anal. Chem.28, 350 (1956).

    Article  Google Scholar 

  3. M. V. Cheshire, C. M. Mundie, H. Shepherd, Soil Biol. Biochem.1, 117 (1969).

    Article  Google Scholar 

  4. J. M. Oades, M. A. Kirkman, G. H. Wagner, Soil Sci., Soil. Amer. Proc.34, 230 (1970).

    Google Scholar 

  5. S. Murayama, Soil Sci. Plant Nutr.23, 247 (1977).

    Google Scholar 

  6. R. Hanada, A. Ono, Soil Sci. Plant Nutr.30, 145 (1984).

    Google Scholar 

  7. P. A. Angers, P. Nadeau, G. R. Mehuys J. Chromatogr.45, 444 (1988).

    Article  Google Scholar 

  8. S. Hughes, D. C. Johnson, Anal. Chim. Acta132, 11 (1981).

    Article  Google Scholar 

  9. D. W. Nelson, L. E. Sommers, in Methods of Soil AnalysisA. L. Page (editor), American Society of Agronom Madison, Wisconsin, p. 539 (1982).

    Google Scholar 

  10. J. M. Bremmer, C. S. Mulvaney, in Methods of Soil AnalysisA. L. Page (editor), American Society of Agronomy Madison, Wisconsin, p. 610 (1982).

    Google Scholar 

  11. M. V. Cheshire, C. M. Mundie, J. Soil Sci.17, 372 (1966).

    Google Scholar 

  12. G. D. Swincer, J. M. Oades, D. J. Greenland, Aust. J. Soil Res.6, 211 (1969).

    Article  Google Scholar 

  13. J. W. Parson, J. Tinssley, Soil Sci.92, 46 (1961).

    Google Scholar 

  14. S. A. Barker, M. H. B. Hayes, R. G. Simmonds, M. Stace Carbohyd. Res.5, 13 (1967).

    Article  Google Scholar 

  15. D. A. Doutre, G. W. Hay, A. Hood, G. W. van Loon, Soil Biol. Biochem.10, 457 (1978).

    Article  Google Scholar 

  16. D. A. Skoog, in Principles of Instrumental AnalysisM. Iannuzzi, P. Smith (editors), Sanders College Publishers Philadelphia, PA (1985).

    Google Scholar 

  17. M. J. Cheshire, C. M. Mundie, H. Shepherd, J. Soil. Sci.22, 22 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martens, D.A., Frankenberger, W.T. Determination of saccharides by high performance anion-exchange chromatography with pulsed amperometric detection. Chromatographia 29, 7–12 (1990). https://doi.org/10.1007/BF02261130

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02261130

Key Words

Navigation