Skip to main content
Log in

The effect of chain length of bonded organic phases in reversed phase high performance liquid chromatography

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Bonded hydrocarbon phases have been prepared by the reaction of organotrichlorosilanes with silica (Lichrosorb Si-100, 10 μm, Merck) using conditions for maximum coverage. Alkyl phases, CH3 (CH2)n-With n=7, 10, 12, 14, 17 and 20 and arylakyl phases, Ph (CH2)n—with n=0,2,4,6 were investigated. In reverse phase chromatography using water/methanol phases a linear relationship was between the capacity ratios k′ and the amount of coverage, independent of chain length. The selectivity, however, depends on the chain length of the bonded phase and molecular structure of the solute, whereas for halogenated benzene derivatives the selectivity is constant, and changing the mobile phase composition shows only a minor effect. The selectivity of 4,4′-dibromodiphenyl in relation to the benzene derivatives is strongly influenced by the chain length and solvent composition. The utilization of chemically bonded organic long chain phases with maximum coverage makes it possible to reduce the water content in the water/methanol phase increasing the efficiency and loading capacity. The extent of maximum coverage was slightly dependent on the chain length and showed only a 10% decrease from n-octyl-to heneicosyl phase. Treatment of the bonded organic phase with TMCS was not effective with long chain materials, but further reaction occurred with bonded phenyl phase, which could be shown by IR-analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Kirkland, Chromatographia8, 661 (1975).

    Google Scholar 

  2. J. H. Knox andA. Pryde, J. Chromatogr.112, 171 (1975).

    Google Scholar 

  3. J. J. Kirkland, J. Chromatogr. Sci.9, 206 (1971).

    Google Scholar 

  4. J. J. Kirkland, andJ. J. deStefano, J. Chromatogr. Sci.8 309 (1970).

    Google Scholar 

  5. I. Sebestian andI. Halász, J. Chromatographia7, 371 (1974).

    Google Scholar 

  6. N. Weigand, I. Sebestian andI. Halász, J. Chromatogr.102, 325 (1974).

    Google Scholar 

  7. I. Halász andI. Sebestian, Angew. Chem, Ed. Engl.8, 453 (1969).

    Google Scholar 

  8. O.-E. Brust, I. Sebestian andI. Halász, J. Chromatogr.83, 15 (1973).

    Google Scholar 

  9. D. C. Locke, J. Chromatogr. Sci.11, 120 (1973).

    Google Scholar 

  10. D. C. Locke, J. T. Schmermund andB. Banner, Anal. Chem.44, 90 (1972).

    Google Scholar 

  11. M. Novotny, S. L. Bektesh andK. Grohmann, J. Chromatogr.83, 25 (1973).

    Google Scholar 

  12. M. Novotny, S. L. Bektesh, K. B. Denson, K. Grohmann andW. Parr, Anal. Chem.45, 971 (1973).

    Google Scholar 

  13. K. Unger andD. Nyamah, Chromatographia7, 63 (1974).

    Google Scholar 

  14. E. Grushka andE. J. Kita, Jr., Anal. Chem.46, 1370 (1974).

    Google Scholar 

  15. R. S. Deelder, P. J. W. M. Claassen andP. J. H. Hendricks, J. Chromatogr.91, 201 (1974).

    Google Scholar 

  16. D. H. Saunders, R. A. Barford, P. Magidman, L. T. Olszewski andH. L. Rothbart, Anal. Chem.46, 834 (1974).

    Google Scholar 

  17. R. K. Gilpin, J. A. Korpi andC. A. Janicki, Anal. Chem.46, 1314 (1974).

    Google Scholar 

  18. A. Pryde, J. Chromatogr. Sci.12, 486 (1974).

    Google Scholar 

  19. D. F. Horgan andJ. N. Little, J. Chromatogr. Sci.10, 76 (1972).

    Google Scholar 

  20. K. Unger, N. Becker andE. Krämer, Chromatographia8, 283 (1975).

    Google Scholar 

  21. I. Halász, R. Endele andJ. Asshauer, J. Chromatogr.112 (1975).

  22. L. R. Snyder andJ. J. Kirkland, “Introduction to Modern Liquid Chromatography”, Wiley-Interscience Publishers, New York, 1974, Chapter 7.

    Google Scholar 

  23. R. E. Majors andH. J. Hopper, J. Chromatogr. Sci.12, 767 (1974).

    Google Scholar 

  24. J. H. Knox andG. Vasvari, J. Chromatogr.83, 181 (1973).

    Google Scholar 

  25. R. M. Cassidy, D. S. LeGay andR. W. Frei, Anal. Chem.46, 340 (1974).

    Google Scholar 

  26. P. Tarrant, J. Am. Chem. Soc.79, 6536 (1957).

    Google Scholar 

  27. Houben-Weyl, Meth. d. org. Chemie, 4. Aufl. Bd. V/1b. S. 466, Verlag Chemie, Weinheim.

  28. R. K. Gilpin andM. F. Burke, Anal. Chem.45, 1383 (1973).

    Google Scholar 

  29. I. Halász andI. Sebestian, Chromatographia7, 371 (1974).

    Google Scholar 

  30. I. Halász inJ. J. Kirkland, “Modern Practice of Liquid Chromatography”, Wiley-Interscience, New York, 1971.

    Google Scholar 

  31. B. I. Karger inJ. J. Kirkland, “Modern Practice of Liquid Chromatography”, Wiley Interscience, New York, 1971.

    Google Scholar 

  32. D. C. Locke, J. Chromatogr. Sci.12, 433 (1974).

    Google Scholar 

  33. K. Unger, Angew. Chem.84, 331 (1972).

    Google Scholar 

  34. K. Unger andE. Gallei, Kolloid and Polymere237, 358 (1970).

    Google Scholar 

  35. E. Grushka, L. R. Snyder andJ. H. Knox, J. Chromatogr. Sci.13, 25 (1975).

    Google Scholar 

  36. D'Ans-Lax, Taschenbuch für Chemiker und Physiker, Band 1, S. 142, Springer-Verlag 1967.

  37. J. P. Larmann, R. C. Williams andD. R. Baker, Chromatographia8, 92 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemetsberger, H., Maasfeld, W. & Ricken, H. The effect of chain length of bonded organic phases in reversed phase high performance liquid chromatography. Chromatographia 9, 303–310 (1976). https://doi.org/10.1007/BF02268831

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02268831

Keywords

Navigation