Skip to main content
Log in

Comparison of a C30 Bonded Silica Column and Columns with Shorter Bonded Ligands in Reversed-Phase LC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The Carotenoid S is a new C30 bonded silica stationary phase, intended for reversed-phase chromatographic applications, which is more hydrophobic and consequently shows stronger retention in comparison to conventionally used C18 stationary phases. We compared the non-polar selectivities of the columns for homologous alkylbenzenes in acetonitrile—water and methanol–water mobile phases and polar reversed-phase selectivities employing the interaction indices and the Linear Free Energy Relationship models. Further, we investigated possibilities of separations of structurally closely related compounds in the groups of phenolic acids, flavones, phthalic acids and related compounds and of acylglycerols on the new C30 column and with different types of columns for reversed-phase chromatography, including shorter alkyl C4, C8, C18 and phenyl bonded stationary phases. The C30 column has in some aspects properties similar to the non-endcapped Nova-Pak column for separation of some acylglycerols with equal equivalent carbon numbers, but enables separations of longer chain triacylglycerols in a single gradient run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sander LC, Wise SA (1993) Shape selectivity in reversed-phase liquid-chromatography for the separation of planar and nonplanar solutes. J Chromatogr 656:335–351

    Article  CAS  Google Scholar 

  2. Sander LC, Sharpless KE, Craft NE, Wise SA (1994) Development of engineered stationary phases for the separation of carotenoid isomers. Anal Chem 66:1667–1674

    Article  CAS  Google Scholar 

  3. Nagae N, Enami M (2000) Retention behavior of reversed-phase for HPLC using a 100 % aqueous mobile phase. Bunseki Kagaku 49:887–893

    Article  CAS  Google Scholar 

  4. Bell CM, Sander LC, Fetzer JC, Wise SA (1996) Synthesis and characterization of extended length alkyl stationary phases for liquid chromatography with application to the separation of carotenoid isomers. J Chromatogr A 753:37–45

    Article  CAS  Google Scholar 

  5. Ligor M, Kovacova J, Gadzala-Kopciuch RM, Studzinsak S, Bocian S, Lehotay J, Buszewski B (2014) Study of RP HPLC retention behaviors in analysis of carotenoids. Chromatographia 77:1047–1057

    Article  CAS  Google Scholar 

  6. Zapala W (2008) Brief analysis of the retention process in RP-HPLC systems with a C30 bonded stationary phase. J Sep Sci 31:2417–2423

    Article  CAS  Google Scholar 

  7. Snyder LR, Dolan JW, Gant JR (1979) Gradient elution in high-performance liquid chromatography I: theoretical basis for reversed-phase systems. J Chromatogr 165:3–30

    Article  CAS  Google Scholar 

  8. Jandera P (1984) Reversed-phase liquid-chromatography of homologous series: a general-method for prediction of retention. J Chromatogr 314:13–36

    Article  CAS  Google Scholar 

  9. Krupczyńska K, Buszewski B, Jandera P (2004) Characterizing HPLC stationary phases. Anal Chem 76(13):226A–234A

    Google Scholar 

  10. Jandera P (1995) In: Smith RM (ed) Retention and selectivity in liquid chromatography: prediction, standardization and phase comparison, Elsevier, Amsterdam, J Chromatogr Libr vol 57, pp 135–267

  11. Bidlingmeyer BA, Deming SN, Price WP, Sachok B, Petrusek M (1979) Retention mechamism for reversed-phase ion-pair liquid chromatography. J Chromatogr A 186:419–434

    Article  CAS  Google Scholar 

  12. Walters MJ (1987) Classification of octadecyl-bonded liquid chromatography columns. J Assoc Off Anal Chem 70(3):465–469

    CAS  Google Scholar 

  13. Kimata K, Iwaguchi K, Onishi S, Jinno K, Eksteen R, Hosoya K, Araki M, Tanaka N (1989) Chromatographic characterization of silica-C-18 packing materials: correlation between a preparation method and retention behavior of stationary phase. J Chromatogr Sci 27(12):721–728

    Article  CAS  Google Scholar 

  14. Engelhardt H, Jungheim M (1990) Comparison and characterization of reversed phases. Chromatographia 29(1–2):59–68

    Article  CAS  Google Scholar 

  15. Gonnet C, Bory C, Lachatre G (1982) Comparative-study of some commercial chemically bonded phases in classical reversed-phase chromatography and in ion-pair reversed-phase liquid chromatography. Chromatographia 16:242–246

    Article  CAS  Google Scholar 

  16. Galushko SV (1993) The calculation of retention and selectivity in reversed-phase liquid chromatography 2: methanol-water eluents. Chromatographia 36:39–42

    Article  CAS  Google Scholar 

  17. Neue UD, Serowik E, Iraneta P, Alden BA, Walter TH (1999) Universal procedure for the assessment of the reproducibility and the classification of silica-based reversed-phase packings I: assessment of the reproducibility of reversed-phase packings. J Chromatogr A 849(1):87–100

    Article  CAS  Google Scholar 

  18. Rogers SD, Dorsey JG (2000) Chromatographic silanol activity test procedures: the quest for a universal test. J Chromatogr 892(1–2):57–65

    Article  CAS  Google Scholar 

  19. Sander LC (1988) Evaluation of column performance in liquid chromatography. J Chromatogr Sci 26(8):380–387

    Article  CAS  Google Scholar 

  20. Sander LC, Wise SA (1990) Evaluation of shape selectivity in liquid chromatography. LC-GC 8(5):378–390

    CAS  Google Scholar 

  21. Sander LC, Wise SA (1993) Shape selectivity in reversed-phase liquid chromatography for the separation of planar and non-planar solutes. J Chromatogr A 656(1–2):335–351

    Article  CAS  Google Scholar 

  22. Jandera P, Colin H, Guiochon G (1982) Interaction indexes for prediction of retention in reversed-phase liquid-chromatography. Anal Chem 54(3):435–441

    Article  CAS  Google Scholar 

  23. Colin H, Guiochon G, Jandera P (1983) Interaction indices and solvent effects in reversed-phase liquid chromatography. Anal Chem 55(3):442–446

    Article  CAS  Google Scholar 

  24. Colin H, Guiochon G, Jandera P (1983) Interaction indices in reversed-phase liquid chromatography: calibration of the system. Chromatographia 17:83–87

    Article  CAS  Google Scholar 

  25. Snyder LR, Dolan JW, Carr PW (2004) The hydrophobic-subtraction model of reversed-phase column selectivity. J Chromatogr A 1060:77–116

    Article  CAS  Google Scholar 

  26. Abraham MH, Rosés M, Poole CF, Poole SK (1997) Hydrogen bonding 42: characterization of reversed-phase high-performance liquid chromatographic C-18 stationary phases. J Phys Org Chem 10:358–368

    Article  CAS  Google Scholar 

  27. Abraham MH, Rosés M (1994) Hydrogen bonding 38: effect of solute structure and mobile-phase composition on reversed-phase high-performance liquid-chromatographic capacity factors. J Phys Org Chem 7:672–684

    Article  CAS  Google Scholar 

  28. Abraham MH, McGovan JC (1987) The use of characteristic volumes to measure cavity terms in reversed phase liquid-chromatography. Chromatographia 23(4):243–246

    Article  CAS  Google Scholar 

  29. Jandera P, Vyňuchalová K, Hájek T, Česla P, Vohralík G (2008) Characterization of HPLC columns for two-dimensional LC × LC separations of phenolic acids and flavonoids. J Chemometr 22:203–217

    Article  CAS  Google Scholar 

  30. Staples CH, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35:667–749

    Article  CAS  Google Scholar 

  31. Sharp RM (1998) Environmental estrogen and male infertility. Pure Appl Chem 70:1685–1701

    Article  Google Scholar 

  32. Holčapek M, Jandera P, Fischer J, Prokeš B (1999) Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. J Chromatogr A 858:13–31

    Article  Google Scholar 

  33. Holčapek M, Jandera P, Zderadička P, Hrubá L (2003) Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 1010:195–215

    Article  Google Scholar 

  34. Dugo P, Favoino O, Tranchida PQ, Dugo G, Mondello L (2004) Off-line coupling of non-aqueous reversed-phase and silver ion high-performance liquid chromatography-mass spectrometry for the characterization of rice oil triacylglycerol positional isomers. J Chromatogr A 1041(1–2):135–142

    Article  CAS  Google Scholar 

  35. Sandra P, Dermaux A, Ferraz V, Dittmann MM, Rozing G (1997) Analysis of triglycerides by capillary electrochromatography. J Microcolumn Sep 9:409–419

    Article  CAS  Google Scholar 

  36. Buchgraber M, Ulberth F, Emons H, Anklam E (2004) Triacylglycerol profiling by using chromatographic techniques. Eur J Lipid Sci Technol 106(9):621–648

    Article  CAS  Google Scholar 

  37. Jandera P, Halama M, Novotná K (2004) Stationary-phase effects in gradient high-performance liquid chromatography. J Chromatogr A 1030(1–2):33–41

    Article  CAS  Google Scholar 

  38. Perona JS, Ruiz-Gutierrez V (2003) Simultaneous determination of molecular species of monoacylglycerols, diacylglycerols and triacylglycerols in human very-low-density lipoproteins by reversed-phase liquid chromatography. J Chromatogr B 785(1):89–99

    Article  CAS  Google Scholar 

  39. Laakso P (1997) Characterization of alpha- and gamma-linolenic acid oils by reversed-phase high-performance liquid chromatography atmospheric pressure chemical ionization mass spectrometry. J Am Oil Chem Soc 74(10):1291–1300

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic (Czech Science Foundation) under project P206/12/0398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Jandera.

Additional information

Published in the topical collection 20th International Symposium on Separation Sciences in Prague with guest editors Aleš Horna and Pavel Jandera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyňuchalová, K., Jandera, P. Comparison of a C30 Bonded Silica Column and Columns with Shorter Bonded Ligands in Reversed-Phase LC. Chromatographia 78, 861–871 (2015). https://doi.org/10.1007/s10337-015-2899-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2899-6

Keywords

Navigation