Skip to main content
Log in

Utilisation of liquid chromatography in aquatic photodegradation studies of pesticides: A comparison between distilled water and seawater

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The advantages of liquid chromatography with diode array and mass spectrometric detection are described for the direct characterization of the photodegradation products of Fenitrothion, Atrazine and Diuron in distilled water and artifical seawater samples. The photodegradation (UV λ>290 nm) of the herbicides Atrazine and Diuron was examined in distilled water and in artificial seawater containing humic acids. Major photodegradation products were hydroxyatrazine and Monuron, respectively. The results showed a faster degradation in seawater as compared to distilled water for Atrazine whereas for Diuron a quenching effect was observed thus retarding photodegradation. The photodegradation of Fenitrothion was also investigated. For this pesticide, hydrolysis predominates in seawater and photolysis is very slow in distilled water, so that acetone was needed as photosensitizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Agricultural chemicals in ground water: proposed pesticide strategy”, US EPA, Washington D.C. (1987) pp 21–27.

  2. C. D. Watts, L. Clark, S. Hennings, K. Moore, C. Parker in “Pesticides: Analytical requirements for compliance with EEC directives”, Water Research Pollution Report 11, Commission of the European Communities, Brussels, Belgium (1989) pp 16–34.

    Google Scholar 

  3. R. Frank, L. Logan, Arch. Environ. Contam. Toxicol.17, 741 (1988).

    Article  Google Scholar 

  4. H. O. Esser, G. Dupuis, E. Ebert, C. Vogel, G. J. Marco, in “Herbicides: Chemistry, degradation and mode of action”, Vol. I,PC. Kearney andD. D. Kaufman eds. M. Dekker, N. York, (1975) Chp. 2.

    Google Scholar 

  5. G. Durand, D. Barceló, J. Chromatogr., (in press).

  6. M. Mansour, E. Feicht, P. Méallier, Toxicol. Environ. Chem.20–21, 139 (1989).

    Google Scholar 

  7. A. Chukwudebe, R. B. March, M. Otham, T. R. Fukuto, J. Agric. Food Chem.37, 539 (1989).

    Article  Google Scholar 

  8. A. M. M. Roof in “The handbook of environmental chemistry”,O. Hutzinger ed., (1982) Springer-Verlag, Berlin, Vol. 2 part B, pp 43–70.

    Google Scholar 

  9. D. Kotzias, W. Klein, F. Korte, Chemosphere,4, 161 (1974).

    Article  Google Scholar 

  10. H. M. Hwang, R. E. Hodson, R. F. Lee in “Photochemistry of environmental aquatic systems”, ACS symposium series, 327, p 27 (1987).

  11. R. G. Zepp, P. F. Schlotzhauer, R. M. Sink, Environ. Sci. Technol.19, 74 (1985).

    Article  Google Scholar 

  12. W. M. Draper, D. G., Crosby, Arch. Environ. Contam. Toxicol.,12, 121 (1983).

    Article  Google Scholar 

  13. K. Fukuda, Y. Inagaki, T. Marumaya, H. I. Kojima, T. Yoshida, Chemosphere,17, 651 (1988).

    Article  Google Scholar 

  14. G. G. Choudry, in “The handbook of environmental chemistry”,O. Hutzinger ed., (1982), Springer-Verlag, Berlin, Vol. 2 part B, pp. 103–128.

    Google Scholar 

  15. T. R. Steinheimer, M. G. Brooks, Intern. J. Environ. Anal. Chem.17, 97 (1984).

    Google Scholar 

  16. D. Barceló, C. Porte, J. Albaigés in “Pesticides: Analytical requirements for compliance with EEC directives”, Water Research Pollution Report 11, Commission of the European Communities. Brussels, Belgium (1989) pp 115–128.

    Google Scholar 

  17. Fenitrothion: the effects of its use on environmental quality and its chemistry, NRCC (1975) pp 83–85.

  18. D. Barceló, Chromatographia25, 928 (1988).

    Google Scholar 

  19. G. Durand, D. Barceló, Toxicol. Environ. Chem.,25, 1 (1989).

    Google Scholar 

  20. D. Barceló, J. Albaigés, J. Chromatogr.,474, 163 (1989).

    Article  Google Scholar 

  21. D. Barceló, Biomed. Environ. Mass Spectrom17, 363 (1988).

    Article  PubMed  Google Scholar 

  22. D. Kotzias, M. Herrmann, A. Zsolnay, H. Russi, F. Korte, Naturwissenschaften73, 35 (1986).

    Article  Google Scholar 

  23. V. Pacákova, K. Stulik, M. Prihoda, J. Chromatogr.,442, 147 (1988).

    Article  PubMed  Google Scholar 

  24. A. Farran, J. De Pablo, D. Barceló, J. Chromatogr.,455, 163 (1988).

    Article  PubMed  Google Scholar 

  25. C. J. Miles, H. Anson Moye, Chromatographia,24, 628 (1987).

    Google Scholar 

  26. A. Alford, Biomed Mass Spectrom5, 259 (1978).

    Article  PubMed  Google Scholar 

  27. S. Walia, P. Dureja, S. K. Mukerjee, Pestic. Sci.,26, 1 (1989).

    Google Scholar 

  28. D. Barceló, Org. Mass Spectrom,24, 219 (1989).

    Article  Google Scholar 

  29. A. G. Harrison, “Chemical ionization mass spectrometry”, CRC Press, Boca Raton, FL, (1983) pp 33–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, G., Barceló, D., Albaigés, J. et al. Utilisation of liquid chromatography in aquatic photodegradation studies of pesticides: A comparison between distilled water and seawater. Chromatographia 29, 120–124 (1990). https://doi.org/10.1007/BF02268696

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02268696

Key Words

Navigation