Skip to main content
Log in

Factors influencing retention and resolution of substituted alkylbenzenes in reversed-phase liquid chromatography

  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The retention data of isomeric xylenes, ethyltoluenes and diethylbenzenes, and of mesitylene, benzene, toluene and ethylbenzene were obtained on a reversedphase column using methanol-water and ethanol-water mobile phases at four different temperatures. This database was used to relate the dependence of solute retention and resolution on the polarity of the mobile phase, solute dipole moment, and column temperature. The additivity of the free energy of the transfer of solute molecules or solute segments from the stationary phase to the mobile phase, was examined for the isomeric compounds. For this, the logarithm of the net retention volume was substituted for the free energy. Deviations from the additivity of free energies indicate that the separation of isomeric substituted alkylbenzenes is governed by their differential interactions with both the polar mobile phase and nonpolar stationary phase. Among the disubstituted alkylbenzenes,ortho-isomers favor the mobile phase more andpara-isomers tend to prefer the stationary phase more. Themeta-isomers are found to follow the additivity rule closely. These trends are amplified as the polarity of the mobile phase is increased indicating that these isomers are resolved better in water-rich mobile phases. These findings are substantiated by analogous results from gas-liquid chromatographic retention data, estimation of dipole moment effects, and examination of the entropic and enthalpic contributions to the net retention volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Jinno, K. Kawasaki, Chromatographia17, 337 (1983).

    Google Scholar 

  2. R.M. Smith, J. Chromatogr.209, 1 (1981).

    Google Scholar 

  3. Y. Kawaguchi, M. Tanaka, M. Nakae, K. Funazo, T. Shono, Anal. Chem.55, 1852 (1983).

    Google Scholar 

  4. C.R. Clark, M.J.M. Wells, R.T. Sansom, J.R. Humerick, W.B. Brown, B.J. Commander, J. Chromatogr. Sci.22, 75 (1984).

    Google Scholar 

  5. B.N. Barman, Analyst111, 479 (1986).

    Google Scholar 

  6. J.H. Knox, J. Kriz, E. Adamcova, J. Chromatogr.447, 13 (1988).

    Google Scholar 

  7. A.A. Aratskova, Ya. I. Yashkin, Zh. Anal. Khim.46, 320 (1991).

    Google Scholar 

  8. M. Tanaka, Y. Kawaguchi, T. Shono, J. Chromatogr.267, 285 (1983).

    Google Scholar 

  9. A.N. Ageev, A.V. Kiselev, Ya. I. Yashin, Dokl. Phys. Chem.249, 377 (1979).

    Google Scholar 

  10. A.V. Kiselev, A.A. Aratskova, T.N. Gvozdovitch, Ya. I. Yashin, J. Chromatogr.195, 205 (1980).

    Google Scholar 

  11. I. Schmeltz, C.T. Dyer, E. Ratchik, J. Matasker, J. Chromatogr.245, 309 (1982).

    Google Scholar 

  12. A. Ono, J. Chromatogr.180, 170 (1979).

    Google Scholar 

  13. K.P. Naikwadi, D.G. Panse, B.V. Bapat, B.B. Ghatge, J. Chromatogr.206, 361 (1981).

    Google Scholar 

  14. P.P. Pawar, K.P. Naikwadi, S.M. Likhite, B.V. Bapat, B.B. Ghatge, J. Chromatogr.245, 57 (1982).

    Google Scholar 

  15. J.K. Haken, I.O.O. Korhonen, J. Chromatogr.265, 323 (1983).

    Google Scholar 

  16. A. Ono, Analyst108, 1265 (1983).

    Google Scholar 

  17. T. Czajkowska, J. Chromatogr.241, 9 (1982).

    Google Scholar 

  18. B.L. Karger, L.R. Snyder, C. Horvath, “An Introduction to Separation Science”, John Wiley & Sons, New York (1973), pp. 166–167.

    Google Scholar 

  19. H. Colin, J.C. Diez-Masa, G. Guiochon, T. Czajkowska, I. Miedziak, J. Chromatogr.167, 41 (1978).

    Google Scholar 

  20. N.L. Ha, J. Ungvaral, E. sz. Kováts, Anal. Chem.54, 2410 (1982).

    Google Scholar 

  21. A.M. Krstulovic, H. Colin, G. Guiochon, Anal. Chem.54, 2438 (1982).

    Google Scholar 

  22. G.C. Benson, O. Kiyohara, J. Solution Chem.9, 791 (1980).

    Google Scholar 

  23. B.N. Barman, Ph. D. Dissertation, Georgetown University (1985).

  24. J.H. Knox, E. sz. Kováts, discussion contribution, Faraday Symp. Chem. Soc., No. 15, p. 177 (1980).

    Google Scholar 

  25. D.E. Martire, R.E. Boehm, J. Phys. Chem.87, 1045 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Leslie S. Ettre on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barman, B.N., Martire, D.E. Factors influencing retention and resolution of substituted alkylbenzenes in reversed-phase liquid chromatography. Chromatographia 34, 347–356 (1992). https://doi.org/10.1007/BF02268367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02268367

Key Words

Navigation