Skip to main content
Log in

Acetylcholinesterase inhibition in neuromuscular synapses in different background states: model studies

  • Published:
Neurophysiology Aims and scope

Abstract

Using mathematical modeling of the process of generation of a miniature end-plate current (MEPC), we studied the effect of acetylcholinesterase (AChE) inhibition on the amplitude and frequency parameters of synaptic signals in the neuromuscular junction. The density of acetylcholine receptors on the postsynaptic membrane and the number of acetylcholine molecules in its quantum were varied. AChE inhibition against the background of a decreased receptor density was shown to result in a much higher increase in the amplitude of modeled MEPC than that in control and in the case of the changed transmitter amount released in the synaptic cleft. The simulation data can be used as a theoretical background for interpretation of the reason for different efficiencies of AChE inhibitors in certain pathological states of the neuromuscular apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fatt and B. Katz, “An analysis of the end-plate potential recorded with an intracellular electrode,”J. Physiol.,115, 320–370 (1951).

    Google Scholar 

  2. H. Takeuchi and N. Takeuchi, “Active phase of frog's end-plate potential,”J. Neurophysiol.,22, 395–411 (1959).

    Google Scholar 

  3. M. Kordas, “On the role of junctional cholinesterase in determining the time course of the end-plate current,”J. Physiol.,270, 133–150 (1977).

    Google Scholar 

  4. L. G. Magazanik, V. V. Fedorov, and V. A. Snetkov, “The time course of postsynaptic current in fast and slow junctions: its alteration by cholinesterase inhibition,”Prog. Brain Res.,49, 225–240 (1979).

    Google Scholar 

  5. J. P. Tremblay, R. Robrtaille, and G. Grenon, “Distribution of spontaneous release along the frog neuromuscular junction,”Neurosci. Lett.,51, 247–252 (1984).

    Google Scholar 

  6. E. A. Bezgina, T. M. Drabkina, S. N. Zemskova, et al., “Peculiarities of the time course of miniature end-plate currents in different regions of the frog neuromuscular junction,”Neirofiziologiya,19, No. 6, 779–789 (1987).

    Google Scholar 

  7. R. B. Land, E. E. Salpeter, and M. M. Salpeter, “Kinetic parameters for acetylcholine interaction in intact neuromuscular junction,”Proc. Natl. Acad. Sci. USA,78, No. 11, 7200–7204 (1981).

    Google Scholar 

  8. L. G. Magazanik, V. A. Snetkov, N. R. Nigmatullin, and E. E. Nikol'skii, “Mathematical modelling of the factors determining the time course of miniature postsynaptic currents in the frog muscles,”Dokl. Akad. Nauk USSR,296, No. 3, 733–738 (1986).

    Google Scholar 

  9. N. R. Nigmatullin, V. A. Snetkov, E. E. Nikol'skii, and L. G. Magazanik, “An analysis of a model of miniature end-plate current,”Neirofiziologiya,20, No. 3, 390–397 (1988).

    Google Scholar 

  10. N. R. Nigmatullin, V. A. Snetkov, E. E. Nikol'skii, and L. G. Magazanik, “Modelling of the effects of ion channel blockers on postsynaptic currents,”Neirofiziologiya,21, No. 4, 476–484 (1989).

    Google Scholar 

  11. M. Mora, E. H. Lambert, and A. G. Engel, “Synaptic vesicle abnormality in familian infantile myasthenia,”Neurobiology,37, 206–214 (1987).

    Google Scholar 

  12. W. van der Kloot, “The regulation of quantal size,”Prog. Neurobiol.,36, 93–130 (1991).

    Google Scholar 

  13. P. Pennefather and D. M. J. Quastel, “Relation between subsynaptic receptor blockade and responses to quantal transmitter at the mouse neuromuscular junction,”J. Gen. Physiol.,78, 313–344 (1981).

    Google Scholar 

  14. P. R. Adams, “An analysis of the dose-response curve at voltage-clamped frog end-plates,”Pflügers Arch.,360, 145–153 (1975).

    Google Scholar 

  15. R. E. Sheridan and H. A. Lester, “Rates and equilibria at the acetylcholine receptor ofElectrophorus electroplaques,”J. Gen. Physiol.,70, 187–219 (1977).

    Google Scholar 

  16. T. M. Bartol, E. E. Salpeter, and M. M. Salpeter, “A comparison of kinetic models of the neuromuscular junction using Monte Carlo simulation,”Soc. Neurosci. Abstr.,16, 673 (1990).

    Google Scholar 

  17. T. M. Bartol, B. R. Land, E. E. Salpeter, and M. M. Salpeter, “Monte Carlo simulation of miniature end-plate current generation in the vertebrate neuromuscular junction,”Biophys. J.,59, 1290–1307 (1991).

    Google Scholar 

  18. L. Eaton and E. Lambert, “Electromyography and electric stimulation of nerves in diseases of motor unit. Myasthenic syndrome associated with malignant tumor,”JAMA,163, 1117–1124 (1957).

    Google Scholar 

  19. B. M. Geht,Syndromes of Pathological Muscular Fatigue [in Russian] Meditsina, Moscow (1974).

    Google Scholar 

  20. D. Fambrough, D. B. Drachman, and S. Satyamurti, “Neuromuscular junction in myasthenia gravis: Decreased acetylcholine receptors,”Science,182, 293 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Neirofiziologiya/Neurophysiology, Vol. 28, No. 4/5, pp. 186–192, July–October, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovyazina, I.V., Giniatullin, R.A., Nikol'skii, E.E. et al. Acetylcholinesterase inhibition in neuromuscular synapses in different background states: model studies. Neurophysiology 28, 145–150 (1996). https://doi.org/10.1007/BF02262776

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02262776

Keywords

Navigation