Skip to main content
Log in

The solubility parameter as a tool in understanding liquid chromatography

  • Green Pages
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The solubility parameter concept is briefly discussed. It is then used to explain some of the current features of liquid partition and adsorption chromatography. Various phase systems are discussed on the basis of three characteristics.retention, selectivity (the general separation power of a system) andspecificity (increased separation power towards certain pairs of solutes). The emergence of two essentially different techniques, the ‘normal phase’ and ‘reversed phase’ modes, will appear as a logical consequence of simplified theory. It also becomes obvious why ‘reversed phase’ applications are so much more numerous. Some suggestions are given for the development of new stationary phases and the improvement of existing ones. The usefulness of the solubility parameter concept to predict the solvent strength of mixed eluents in reversed phase liquid chromatography (RPLC) is demonstrated. Some practical rules for the selection and operation of stationary and mobile phase systems are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Snyder, J. Chromatogr.92, 223 (1974).

    Google Scholar 

  2. L. R. Snyder, J. Chrom. Sci.16, 223 (1978).

    Google Scholar 

  3. R. McCormick, P. J. Schoenmakers, B. L. Karger, IV th International Symposium on Column Liquid Chromatography, Boston, 1979.

  4. C. Horváth, W. Melander, I. Molnár, J. Chromatogr.125, 129 (1976).

    Google Scholar 

  5. C. Horváth, W. Melander, I. Molnár, Anal. Chem.49, 142 (1977).

    Google Scholar 

  6. R. A. Keller, B. L. Karger, L. R. Snyder, in: “Gas Chromatography 1970”,R. Stock (Ed.), Institute of Petroleum, London 1971; p. 125.

    Google Scholar 

  7. B. L. Karger, C. Eon, L. R. Snyder, J. Chromatogr.125, 71 (1976).

    Google Scholar 

  8. B. L. Karger, L. R. Snyder, C. Eon, Anal. Chem.50, 2126 (1978).

    Google Scholar 

  9. R. Tijssen, H. A. H. Billiet, P. J. Schoenmakers, J. Chromatogr.122, 185 (1976).

    Google Scholar 

  10. J. H. Hildebrand, J. M. Prausnitz, R. L. Scott, “Regular and Related Solutions”, Van Nostrand Reinhold, New York, 1970.

    Google Scholar 

  11. H. G. Harris, J. M. Prausnitz, J. Chrom. Sci. 7, 685 (1969).

    Google Scholar 

  12. P. Alessi, I. Kikic, G. Torriano, J. Chromatogr.106, 17 (1975).

    Google Scholar 

  13. A. F. M. Barton, Chem. Rev.75, 731 (1975).

    Google Scholar 

  14. P. J. Schoenmakers, H. A. H. Billiet, R. Tijssen, L. de Galan, J. Chromatogr.149, 519 (1978).

    Google Scholar 

  15. P. J. Schoenmakers, H. A. H. Billiet, L. de Galan, J. Chromatogr.185, 179 (1979).

    Google Scholar 

  16. H. Colin, C. Eon, G. Guiochon, J. Chromatogr.119, 41 (1976); ibid.H. Colin, C. Eon, G. Guiochon, J. Chromatogr.122, 223 (1976).

    Google Scholar 

  17. H. Colin, G. Guiochon, J. Chromatogr.137, 19 (1976).

    Google Scholar 

  18. K. K. Unger, P. Roumeliotis, H. Mueller, G. Goetz, J. Chromatogr.202, 3 (1980).

    Google Scholar 

  19. E. Smolková, J. Zima, F. Dousek, J. Jansta, Z. Plzák, J. Chromatogr.191, 61 (1980).

    Google Scholar 

  20. A. V. Kiselev, Discuss. Faraday Soc.40, 228 (1964).

    Google Scholar 

  21. G. E. Berendsen, K. A. Pikaart, L. de Galan, C. Olieman, Anal. Chem.52, 1990 (1980).

    Google Scholar 

  22. P. J. Schoenmakers, H. A. H. Billiet, L. de Galan, J. Chromatogr.218, 261 (1981).

    Google Scholar 

  23. C. Hansen, A. Beerbower, in: “Kirk-Othmer encyclopedia of chemical technology”, 2nd edition, suppl. vol., New York, 1971; p. 889.

  24. J. D. Crowley, G. S. Teague, J. W. Lowe jr., J. Paint Technol.38 (496), 269 (1966);39 (504), 19 (1967).

    Google Scholar 

  25. E. B. Bagley, T. P. Nelson, J. M. Scigliano, J. Paint Technol.43 (555), 35 (1971).

    Google Scholar 

  26. E. B. Bagley, T. P. Nelson, J. W. Barlow, S.-A. Chen, I. & E. C. Fund.9, 93 (1970).

    Google Scholar 

  27. E. B. Bagley, T. P. Nelson, S. A. Chen, J. W. Barlow, I. & E C. Fund.10, 27 (1971).

    Google Scholar 

  28. I. A. Wiehe, E. B. Bagley, A. I. Ch. E. Journ.13, 836 (1976).

    Google Scholar 

  29. F. London, Z. Physik. Chem.B11, 222 (1930).

    Google Scholar 

  30. F. London, Trans. Faraday Soc.33, 8 (1937).

    Google Scholar 

  31. C. J. F. Böttcher, “Theory of electric polarization”, Elsevier, Amsterdam, 1952 (1975).

    Google Scholar 

  32. H. Colin, N. Ward, G. Guiochon, J. Chromatogr.149, 169 (1978).

    Google Scholar 

  33. P. J. Schoenmakers, H. A. H. Billiet, L. de Galan, J. Chromatogr.205, 13 (1981).

    Google Scholar 

  34. H. A. H. Billiet, P. S. Schoenmakers, L. de Galan, J. Chromatogr.218, 443 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Main author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenmakers, P.J., Billiet, H.A.H. & de Galan, L. The solubility parameter as a tool in understanding liquid chromatography. Chromatographia 15, 205–214 (1982). https://doi.org/10.1007/BF02261542

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02261542

Key Words

Navigation