Skip to main content
Log in

Regulation of taurine transport in Ehrlich ascites tumor cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Taurine influx is inhibited and taurine efflux accelerated when the cell membrane of Ehrlich ascites tumor cells is depolarized. Taurine influx is inhibited at acid pH partly due to the concomitant depolarization of the cell membrane partly due to a reduced availability of negatively charged free carrier. These results are in agreement with a 2Na, 1Cl, 1taurine cotransport system which is sensitive to the membrane potential due to a negatively charged empty carrier. Taurine efflux from Ehrlich cells is stimulated by addition of LTD4 and by swelling in hypotonic medium. Cell swelling in hypotonic medium is known to result in stimulation of the leukotriene synthesis and depolarization of the cell membrane. The taurine efflux, activated by cell swelling, is dramatically reduced when the phospholipase A2 is inhibited indirectly by addition of the anti-calmodulin drug pimozide, or directly by addition of RO 31-4639. The inhibition is in both cases lifted by addition of LTD4. The swelling-induced taurine efflux is also inhibited by addition of the 5-lipoxygenase inhibitors ETH 615-139 and NDGA. It is concluded that the swelling-induced activation of the taurine leak pathway involves a release of arachidonic acid from the membrane phospholipids and an increased oxidation of arachidonic acid into leukotrienes via the 5-lipoxygenase pathway. LTD4 seems to act as a second messenger for the swelling induced activation of the taurine leak pathway either directly or indirectly via its activation of the Cl channels, i.e., via a depolarization of the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnard, J.A., Thaxter, S., Kikuchi, K., Ghishan, F.K. 1988. Taurine transport by rat intestine.Am. J. Physiol. 254:G334-G338

    Google Scholar 

  • Bucuvalas, J.C., Goodrich, A.L., Suchy, F.J. 1987. Hepatic taurine transport: a Na+-dependent carrier on the basolateral plasma membrane.Am. J. Physiol. 253:G351-G358

    Google Scholar 

  • Cashman, J.R. 1985. Leukotriene biosynthesis inhibitor.Pharm. Res. 6:253–261

    Google Scholar 

  • Chamberlin, M.E., Strange, K. 1989. Anisosmotic cell volume regulation: A comparative view.Am. J. Physiol. 257:C159-C173

    Google Scholar 

  • Chesney, R.W., Gusowski, N., Dabbagh, S., Theissen, M., Padilla, M. and Diehl, A. 1985. Factors affecting the transport ofβ-amino acids in rat renal brush-border membrane vesicles. The role of external chloride.Biochim. Biophys. Acta 812:702–712

    Google Scholar 

  • Christensen, H.N. 1962. Some special kinetic problems of transport.Adv. Enzymol. 32:1–20

    Google Scholar 

  • Christensen, H.N., Hess, N., Riggs, T.R. 1954. Concentration of taurine,β-alanine and triiodothyronine by ascites tumor carcinoma cells.Cancer Res. 13:124–127

    Google Scholar 

  • Christensen, H.N., Liang, M.J. 1966. On the nature of the ‘non-saturable’ migration of amino acids into Ehrlich cells and into rat jejunum.Biochim. Biophys. Acta 112:524–531

    Google Scholar 

  • Craven, P.A., DeRubertis, F.R. 1983. Ca2+ calmodulin-dependent release of arachidonic acid for renal medullary prostaglandin synthesis.J. Biol. Chem. 258:4814–4823

    Google Scholar 

  • Grynkiewicz, G., Poenie, M., Tsien, R.Y. 1985. Anew generation of Ca2+ indicators with greatly improved fluorescence properties.J. Biol. Chem. 260(6):3440–3450

    Google Scholar 

  • Heinz, E., Sommerfeld, D.L., Kinne, R.K.H. 1988. Electrogenicity of sodium/l-glutamate cotransport in rabbit renal brushborder membranes: a reevaluation.Biochimica Biophysica Acta 937:300–308

    Google Scholar 

  • Henderson, L.M., Chappell, J.B. and Jones, T.G. 1989. Superoxide generation is inhibited by phospholipase A2 inhibitors. Role for phospholipase A2 in the activation of the NADPH oxidase.Biochem. J. 264:249–255

    Google Scholar 

  • Hoffmann, E.K., Hendil, K.B. 1976. The role of amino acids and taurine in isosmotic intracellular regulation in Ehrlich ascites mouse tumour cells.J. Comp. Physiol. 108:279–286

    Google Scholar 

  • Hoffmann, E.K., Kolb, K. 1991. Mechanisms of activation of regulatory volume responses after cell swelling.In: Advances in Comparative and Environmental Physiology. Volume and Osmolality Control in Animal Cells. R.G. Gilles, E.K. Hoffmann, and L. Bolis, editors.9 :140–177

  • Hoffmann, E.K., Lambert, I.H. 1983. Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells.J. Physiol. 338:613–625

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H., Simonsen, L.O. 1986. Separate, Ca2+-activated K+ and Cl transport pathways in Ehrlich ascites tumor cellsJ. Membrane Biol. 91:227–244

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H. and Simonsen, L.O., 1988. Mechanisms in volume regulation in Ehrlich ascites tumor cells.Renal Physiol. and Biochem. 3-5:221–247

    Google Scholar 

  • Hoffmann, E.K., Simonsen, L.O., Lambert, I.H. 1984. Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+.J. Membrane Biol. 78:211–222

    Google Scholar 

  • Hoffmann, E.K., Simonsen, L.O., Sjøholm, C. 1979. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumor cells.J. Physiol. 296:61–84

    Google Scholar 

  • Kirstein, D., Thomsen, M.K., and Ahnfelt-Rønne, I. 1991. Inhibition of leukotriene biosynthesis and polymorphonuclear leukocyte functions by orally active quinolylmethoxyphenylamines.Pharmacol. Toxicol. 68:125–130

    Google Scholar 

  • Kramhøft, B., Lambert, I.H., Hoffmann, E.K. 1988. Na+/H+ exchange in Ehrlich ascites tumor cells: Activation by cytoplasmatic acidification and by treatment with cupric sulphate.J. Membrane Biol. 102:35–48

    Google Scholar 

  • Kromphardt, H. 1963. Die Aufnahme von Taurine in Ehrlich-Ascites Tumorzellen.Biochem. Z. 339:233–254

    Google Scholar 

  • Kromphardt, H. 1965. Zur pH-Abhängigkeit des Transports neutraler Aminosäuren in Ehrlich-Ascites-Tumorzellen.Biochem. Z. 343:283–293

    Google Scholar 

  • Lambert, I.H., 1984. Na+-dependent taurine uptake in Ehrlich ascites tumour cells.Mol. Physiol. 6:233–246

    Google Scholar 

  • Lambert, I.H., 1985. Taurine transport in Ehrlich ascites tumour cells. Specificity and chloride depdendence.Mol. Physiol. 7:323–332

    Google Scholar 

  • Lambert, I.H. 1989. Leukotriene-D4 induced cell shrinkage in Ehrlich ascites tumor cells.J. Membrane Biol. 108:165–176

    Google Scholar 

  • Lambert, I.H., Hoffmann, E.K. 1982. Amino acid metabolism and protein turnover under osmotic conditions in Ehrlich ascites tumor cells.Mol. Physiol. 2:273–286

    Google Scholar 

  • Lambert, I.H., Hoffmann, E.K. 1991. The role of phospholipase-A2 and 5-lipoxygenase in the activation of K and Cl channels and the taurine leak pathway in Ehrlich ascites tumor cell.Acta Physiol. Scand. 143(1):33A

    Google Scholar 

  • Lambert, I.H., Hoffmann, E.K., Christensen, P. 1987. Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells.J. Membrane Biol. 98:247–256

    Google Scholar 

  • Lambert, I.H., Hoffmann, E.K., Jørgensen, F. 1989. Membrane potential, anion and cation conductance in Ehrlich ascites tumor cells.J. Membrane Biol. 111:113–132

    Google Scholar 

  • Laris, P.C., Pershadsingh, H.A., Johnstone, R.M., 1976. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescence dye.Biochim. Biophys. Acta 436:475–488

    Google Scholar 

  • Law, R.O. 1991. Amino acids as volume-regulatory osmolytes in mammalian cells.Comp. Biochem. Physiol. 99A(3):263–277

    Google Scholar 

  • Livine, A., Hoffmann, E.K. 1990. Cytoplasmatic acidification and activation of Na+/H+ exchange during regulatory volume decrease in Ehrlich ascites tumor cells.J. Membrane Biol. 114:153–157

    Google Scholar 

  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the folin phenol reagent.J. Biol. Chem. 193:265–275

    Google Scholar 

  • Olea, R.S., Pasantes-Morales, H., Lázaro, A., Cereijido, M. 1991. 0smolarity-sensitive release of free amino acids from cultured kidney cell (MDCK).J. Membrane Biol. 121:1–9

    Google Scholar 

  • Pasantes-Morales, H., Schousboe, A. 1988. Volume regulation in astrocytes: A role for taurine as osmoeffector.J. Neurosci. Res. 20:505–509

    Google Scholar 

  • Philo, R.D., Eddy, A.A. 1978. The membrane potential of mouse ascites-tumor cells studied with the fluorescent probe 3,3′-dipropyloxadicarbocyanine.Biochem. J. 174:801–810

    Google Scholar 

  • Simonsen, L.O., Brown, A.M., Christensen, S., Harbak, H., Svane, P.C., Hoffmann, E.K. 1990. Thrombin and bradykinin mimic the volume response induced by cell swelling in Ehrlich mouse ascites tumor cells.Renal Physiol. Biochem. 13:176

    Google Scholar 

  • Solis, J.M., Herranz, A.S., Herreras, O., Menedez, N., Martin del Rio, R. 1990. Weak organic acids induce taurine release through an osmotic-sensitive process inin vivo rat hippocampus.J. Neurosci. Res. 26:159–167

    Google Scholar 

  • Valdeolmillos, M., Garcia-Sancho, J., Herreros, B. 1986. Differential effects of transmembrane potential on two Na+-dependent transport systems for neutral amino acids.Biochim. Biophys. Acta 858:181–187

    Google Scholar 

  • Van den Bosch, H. 1980. Intracellular phospholipase A.Biochim. Biophys. Acta 604:191–246

    Google Scholar 

  • Wade, J.V., Olson, J.P., Samson, F.E. Nelson, S.R., Pazdernik, T.L. 1988. A possible role for taurine in osmoregulation with the brainJ. Neurochem. 51:740–745

    Google Scholar 

  • Wolff, N.A., Kinne, R. 1988. Taurine transport by rabbit kidney brush-border membranes: Coupling to sodium, chloride and the membrane potential.J. Membrane Biol. 102:131–139

    Google Scholar 

  • Wolff, N.A., Perlman, D.F., Goldstein, L. 1986. Ionic requirements of peritubular taurine transport in Fundulus kidney.Am. J. Physiol. 250:R984-R990

    Google Scholar 

  • Zelikovic, I., Stejskal-Lorenz, E., Lohstroh, P., Budreau, A., Chesney, R.W. 1989. Anion dependence of taurine transport by rat renal brush-border membrane vesicles.Am. J. Physiol. 256:F646-F655

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, I.H., Hoffmann, E.K. Regulation of taurine transport in Ehrlich ascites tumor cells. J. Membrain Biol. 131, 67–79 (1993). https://doi.org/10.1007/BF02258535

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02258535

Key Words

Navigation