Skip to main content
Log in

Relation between cytoskeleton, hypo-osmotic treatment and volume regulation in Ehrlich ascites tumor cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Pretreatment with cytochalasin B, which is known to disrupt microfilaments, significantly inhibits regulatory volume decrease (RVD) in Ehrlich ascites tumor cells, suggesting that an intact microfilament network is a prerequisite for a normal RVD response. Colchicine, which is known to disrupt microtubules, has no significant effect on RVD. Ehrlich cells have a cortical three-dimensional, orthogonal F-actin filament network which makes the cells look completely black in light microscopy following immunogold/silver staining using anti-actin antibodies. After addition of cytochalasin B, the stained cells get lighter with black dots localized to the plasma membrane and appearance of multiple knobby protrusions at cell periphery. Also, a significant decrease in the staining of the cells is seen after 15 min of RVD in hypotonic medium. This microfilament reorganization appears during RVD in the presence of external Ca2+ or Ca2+-ionophore A23187. It is, however, abolished in the absence of extracellular calcium, with or without prior depletion of intracellular Ca2+ stores. An effect of increased calcium influx might therefore be considered. The microfilament reorganization during RVD is abolished by the calmodulin antagonists pimozide and trifluoperazine, suggesting the involvement of calmodulin in the process. The microfilament reorganization is also prevented by addition of quinine. This quinine inhibition is overcome by addition of the K+ ionophore valinomycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertini, D.F., Herman, B. 1984. Cell shape and membrane receptors dynamics modulation by the cytoskeleton.In: Cell and Muscle Motility: The Cytoskeleton. J.W. Shay, editor. Vol. 5, pp. 345–536. Plenum, New York, London

    Google Scholar 

  • Appleman, M.M., Ariano, M.A., Takemoto, D.J., Whitson, R.H. 1982. Cyclic nucleotide phosphodiesterases.Hand. Exp. Pharmac. 58(1):261–300

    Google Scholar 

  • Borisy, G.G., Taylor, E.W. 1967. The mechanism of action of colchicine.J. Cell Biol. 34:525–533

    Google Scholar 

  • Chaldokov, G.N., Nabika, T., Nara, Y, Yamori, Y. 1989. Cyclic AMP- and cytochalasin B-induced arborization in cultured aortic smooth muscle cells: its cytopharmacological characterization.Cell Tissue Res. 255:435–442

    Google Scholar 

  • Cheung, R.K., Grinstein, S., Dosch, H.M., Gelfand, E.W. 1982. Volume regulation by human lymphocytes: characterization of the ionic basis for regulatory volume decrease.J. Cell. Physiol. 112:189–196

    Google Scholar 

  • Christensen, O. 1987. Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels.Nature 330(5):66–68

    Google Scholar 

  • Christensen, O., Hoffmann, E.K., Saermark, T., Sinonsen, L.O. 1988. Inositol triphosphate may be a second messenger in regulatory volume decrease in Ehrlich mouse ascites tumor cells.J. Physiol. 403 :109P

    Google Scholar 

  • Christensen, O., Hoffmann, E.K. 1992. Cell swelling activates K and Cl channels as well as nonselective stretch-activated cation channels in Ehrlich ascites tumor cells.J. Membrane Biol. 129:13–36

    Google Scholar 

  • Cornet, M., Delpire, E., Gilles, R. 1987. Study of microfilaments network during volume process of cultured PC12 cells.Pfluegers Arch. 410:223–225

    Google Scholar 

  • Cornet, M., Delpire, E., Gilles, R. 1988. Relations between cell volume control, microfilaments and microtubules networks in T2 and PC12 cultured cells.J. Physiol. (Paris) 83:43–49

    Google Scholar 

  • Cornet M., Isobe, Y., Lemanski, L.F. 1992. Cytoskeleton of cultured PC12 cells during volume regulation under hypoosmotic conditions (submitted)

  • Cornet, M., Ubl, J., Kolb, H.-A. 1993. Cytoskeleton and ion movements during volume regulation in cultured PC 12 cells.J. Membrane Biol. (in press)

  • Delpire, E., Cornet, M., Gilles, R. 1991. Volume regulation in rat pheochromocytoma cultured cells submitted to hypoosmotic conditions.Arch. Int. Physiol. Biochim. 99:71–76

    Google Scholar 

  • Delpire, E., Duchêne, C., Goessens, G., Gilles, R. 1985. Effects of osmotic shocks on the ultrastructure of different tissues and cell types.Exp. Cell Res. 160:106–116

    Google Scholar 

  • De Mey, J., Moeremans, M., Geuens, G., Nuydens, R., de Brabander, M. 1981. High resolution light and electron microscopic localization of tubulin with the IgS (Immunogold Staining) method.Cell Biol. Int. Reports 5:889–899

    Google Scholar 

  • Erxleben, C., Ubl, J., Kolb, H.-A. 1989. Identifying and characterizing stretch-activated channels.In: Molecular Neurobiology. A Practical Approach. H. Wheal, and J. Chad, editors. pp. 75–91. IRL, Oxford, Washington DC

    Google Scholar 

  • Foskett, J.K., Spring, K.R. 1985. Involvement of calcium and cytoskeleton in gallbladder epithelial cell volume regulation.Am. J. Physiol. 248:C27-C36

    Google Scholar 

  • Galkin, A.A., Khodorov, B.I. 1988. The involvement of furosemide-sensitive ion counter transport system in the autoregulation of macrophage volume: role of the cytoskeleton.Biol. Memb. 5(3):302–307

    Google Scholar 

  • Gilles, R., Delpire, E., Duchêne, C., Cornet, M., Pequeux, A. 1986. The effect of cytochalasin B on the volume regulation response of isolated axons of the green crabCarcinus maenas submitted to hypo-osmotic media.Comp. Biochem. Physiol. 85A:523–525

    Google Scholar 

  • Glenney, J.R., Jr., Bretscher, A., Weber, K. 1980. Calcium control of the intestinal microvillus cytoskeleton: its implication for the regulation of microfilament organization.Proc. Natl. Acad. Sci. USA 77(11):6458–6462

    Google Scholar 

  • Grinstein, S., Du Pre, A., Rothstein, A. 1982. Volume regulation by human lymphocytes. Role of calcium.J. Gen. Physiol. 79:849–868

    Google Scholar 

  • Hendil, K.B., Hoffmann, E.K. 1974. Cell volume regulation in Ehrlich ascites tumor cells.J. Cell. Physiol. 84:115–125

    Google Scholar 

  • Henson, J.H., Schatten, G. 1983. Calcium regulation of the actinmediated cytoskeletal transformation of sea urchin coelomocytes.Cell Motil. 3:525–534

    Google Scholar 

  • Hoffmann, E.K., Simonsen, L.O., Lambert, I.H. 1984. Volumeinduced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+.J. Membrane Biol. 78:211–222

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H., Simonsen, L.O. 1986. Separate, Ca2+-activated K+ and Cl transport pathways in Ehrlich ascites tumor cells.J. Membrane Biol. 91:227–244

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H., Simonsen, L.O. 1988. Mechanisms in volume regulation in Ehrlich ascites tumor cells.Renal Physiol. Biochem. 11(3-5):221–247

    Google Scholar 

  • Hoffmann, E.K., Simonsen, L.O., Lambert, I.H. 1993. Cell volume regulation: Intracellular Transmission.In: Advances in Comparative and Environmental Physiology. Vol 14, pp. 188–248. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Kleinzeller, A. 1965. The volume regulation in some animal cells.Arch. Biol. 76:217–232

    Google Scholar 

  • Kleinzeller, A. 1972. Cellular transport of water.In: Metabolic Pathways. E. Hokin, editor. pp. 91–131. Academic, New York

    Google Scholar 

  • Kramhøft, B., Lambert, I.H., Hoffmann, E.K., Jørgensen, F. 1986. Activation of Cl-dependent K transport in Ehrlich ascites tumor cells.Am. J. Physiol. 251:C369-C379

    Google Scholar 

  • Lambert, I.H., Hoffmann, E.K., Jørgensen, F. 1989. Membrane potential, anion and cation conductance in Ehrlich ascites tumor cells.J. Membrane Biol. 111:113–132

    Google Scholar 

  • Lewis, S.A., Moura, J.L.C. 1982. Incorporation of cytoplasmatic vesicles into apical membrane of mammalian urinary epithelium.Nature 298:685–688

    Google Scholar 

  • Mac Lean-Fletcher, S.D., Pollard, T.D. 1980. Mechanism of action of cytochalasin B on actin.Cell 20:329–341

    Google Scholar 

  • Mills, J.W. 1987. The cell cytoskeleton: possible role in volume control.Cur. Topics Memb. Transp. 30:75–101

    Google Scholar 

  • Mills, J.W., Skiest, D.J. 1985. Role of cyclic AMP and cytoskeleton in volume control in MDCK cells.Mol. Physiol. 8:247–262

    Google Scholar 

  • Mills, J.W., Lubin, M. 1986. Effect of adenosine 3′,5′-cyclic monophosphate on volume and cytoskeleton of MDCK cells.Am. J. Physiol. 250:C319-C324

    Google Scholar 

  • Morris, C.E. 1990. Mechanosensitive ion channels.J. Membrane Biol. 113:93–107

    Google Scholar 

  • Pardee, J.D., Simpson, P.A., Stryer, L., Spudich, J.A. 1982. Actin filaments undergo limited subunit exchange in physiological salt conditions.J. Cell Biol. 94:316–324

    Google Scholar 

  • Pierce, S.K., Politis, A.D. 1990. Ca-activated cell volume recovery mechanisms.Annu. Rev. Physiol. 52:27–42

    Google Scholar 

  • Pollard, T.D., Aebi, U., Copper, J.A., Elzinga, M., Fowler, W.E., Griffith, L.M., Herman, I.M., Heuser, J., Isenberg, G., Kiehart, D.P., Levy, J., Mac Lean-Fletcher, S.D., Maupin, P., Mooseker, M.S., Runge, M., Smith, P.R., Tseng, P. 1982. The mechanism of actin-filament assembly and crosslinking.In: Cell and Muscle Motility. R.M. Dowben, and J.W. Shay, editors. Vol. 2. pp. 15–44. Plenum, New York, London

    Google Scholar 

  • Pritchard, K., Moody, C.J. 1986. Caldesmon: a calmodulin binding actin-regulatory protein.Cell Calcium 7(5-6):309–327

    Google Scholar 

  • Rugolo, M., Mastrocola, T., Flamigni, A., Lenaz, G. 1989. Chloride transport in human fibroblasts is activated by hypotonic shock.Biochem. Biophys. Res. Comm. 160(3):1330–1338

    Google Scholar 

  • Sachs, F. 1987. Baroreceptor mechanisms at the cellular level.Fed. Proc. 46(1):12–16

    Google Scholar 

  • Sachs, F. 1988. Mechanical transduction in biological systems.CRC Crit. Rev. Biomed. Eng. 16:141–169

    Google Scholar 

  • Sarkadi, B., Cheung, R., Mack, E., Grinstein, S., Gelfand, E.W., Rothstein, A. 1985. Cation and anion transport pathways in volume regulatory response of human lymphocytes to hyposmotic media.Am. J. Physiol. 248:C480-C487

    Google Scholar 

  • Schliwa, M. 1986. The cytoskeleton. An introductory survey. Cell Biology Monographs. Vol. 13. Springer-Verlag, Wien, New York

    Google Scholar 

  • Sobue, K., Sellers, J.R. 1991. Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems.J. Biol. Chem. 266:12115–12118

    Google Scholar 

  • Stolz, B., Bereiter-Hahn, J. 1988. Increase of cytosolic calcium results in formation of F-actin aggregates in endothelial cells.Cell Biol. Int. Reports 12(4):321–329

    Google Scholar 

  • Stossel, T.P. 1989. From signal to pseudopod.J. Biol. Chem. 264(31):18261–18264

    Google Scholar 

  • Ubl, J., Murer, H., Kolb, H.-A. 1988. Ion channels activated by osmotic and mechanical stress in membranes of opossum kidney cells.J. Membrane Biol. 104:223–232

    Google Scholar 

  • Ubl, J., Murer, H., Kolb, H.-A. 1989. Osmotically activated ion channels in membranes of opossum kidney cells.In: Salt and Hypertension. R. Rettig, D. Ganten, and F.C. Luft, editors. pp. 23–32. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Valdeolmillos, M., Garcia-Sancho, J., Herreros, B. 1982. Ca2+-dependent K+ transport in the Ehrlich ascites tumor cell.Biochim. Biophys. Acta 685:273–278

    Google Scholar 

  • Van Rossum, G.D.V., Russo, M.A. 1981. Ouabain-resistant mechanism of volume control and the ultrastructural organization of liver slices recovering from swelling in vitro.J. Membrane Biol. 59:191–209

    Google Scholar 

  • Wegner, A., Neuhaus, J.M. 1981. Requirement of divalent cations for fast exchange of actin monomers and actin filaments subunits.J. Mol. Biol. 153:681–693

    Google Scholar 

  • Westermark, B., Porter, K.R. 1982. Hormonally induced changes in the cytoskeleton of human thyroid cells in culture.J. Cell Biol. 94:42–50

    Google Scholar 

  • Wong, S., Chase, H.S., Jr. 1986. Role of intracellular calcium in cellular volume regulation.Am. J. Physiol. 250:C841-C852

    Google Scholar 

  • Wulf, E., Deboben, A., Bautz, F.A., Faulstich, H. Wieland, T. 1979. Fluorescent phallotoxin, a tool for the visualization of cellular actin.Proc. Natl. Acad. Sci. USA 76(9):4498–4502

    Google Scholar 

  • Yin, H.L., Hartwig, J.H., Maruyama, K., Stossel, T.P. 1981. Ca2+ control of actin filament length.J. Biol. Chem. 256:9693–9697

    Google Scholar 

  • Ziyadeh, F.N., Mills, J.W., Kleinzeller, A. 1992. Hypotonicity and cell volume regulation in shark rectal gland: role of organic osmolytes and F-actin.Am. J. Physiol. 262:F468-F479.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornet, M., Lambert, I.H. & Hoffmann, E.K. Relation between cytoskeleton, hypo-osmotic treatment and volume regulation in Ehrlich ascites tumor cells. J. Membrain Biol. 131, 55–66 (1993). https://doi.org/10.1007/BF02258534

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02258534

Key Words

Navigation